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Preface

What can we do to reduce global warming? How can we prevent another global

financial crisis? How to fight AIDS? How can we reduce hunger in the world?

These questions ask about causal effects of interventions. Obviously, interven-

tions based on the wrong causal theories and hypotheses will cost the life of many

and huge amounts of money that could be spent more appropriately. Even if our

daily problems are less dramatic, they are of the same nature. Just think about

your own actions that you have to chose in your responsibilities as a student, sci-

entist, teacher, physician, psychologist, politician, or just as a parent! Whatever

you do has effects, and these effects might be different if you take one action in-

stead of another one. It is these kind of thoughts that make us believe that there is

no other issue in the methodology of empirical sciences that deserves and needs

more attention and effort than causality. And because the dependencies we are

investigating are of a nondeterministic nature, we need a probabilistic theory of

causality. In other words, we need to understand probability and causality.

What This Book is About

Empirical causal research involves several inferences and interpretations. Among

these are:

(a) statistical inference, i. e., the inference from sample data to parameters

characterizing the distributions of random variables,

(b) causal inference, i. e., the inference from parameters characterizing the dis-

tributions of random variables to causal effects and/or dependencies,

(c) interpretation of the putative cause,

(d) interpretation of the outcome variable,

(e) interpretation of the random experiment considered.

This book does not deal with all these points. We will neither discuss the math-

ematics of statistical inference nor the content issues of construct validity or ex-

ternal validity (Campbell & Stanley, 1963; Cook & Campbell, 1979; Shadish, Cook,

& Campbell, 2002) involved in points (c) to (e). Instead we will focus on the sec-

ond point: causal inference, i. e., the inference from parameters (such as the ex-

pectations of an outcome variable in two treatment conditions) to causal effects

and/or causal dependencies. This is what the probabilistic theory of causality

presented in this book is about. As will be shown in this book, causal effects are



VI

also parameters that characterize the joint distributions of the random variables

considered in a random experiment. However, their definitions are less obvious

than ‘ordinary’ expectations and their differences.

Basic Idea

In order to get a first impression of what this means, let us briefly formulate the

basic idea that can most easily be explained if the putative (or presumed) cause is

a treatment variable. Suppose an individual, or in more general terms, an obser-

vational unit, could be treated by condition 1 or it could be treated by condition

0, everything else being invariant. If there is a difference in the outcome consid-

ered (some measure of success of the treatment), then this difference is due to the

difference in the two treatment conditions. This conception goes back at least to

Mill (1843/1865).

Multiple Determinacy

The problem with this first version of the basic idea is that most outcomes are

multiply determined, i. e., they are not only influenced by the treatment variable,

but by many other variables as well. In the field of agricultural research, e. g., the

yield (outcome) of a variety not only depends on the variety (treatment) itself,

but it also depends on the quality of the plot (observational unit), such as the

average hours of sunshine on the plot per day, the amount of water reaching the

plot, and the number of microbes in the plot, etc. Although Mill’s idea sounds

perfect, it is not immediately clear which implications it has for practice, because

the number of other causes is often too large for keeping constant all of them.

Furthermore Mill’s idea fails to distinguish between covariates and intermediate

variables. Holding constant all intermediate as well — and not only all covariates

— would imply that there is no treatment effect any more, if we assume that all

treatment effects have to be transmitted by some intermediate(s) (see section 4.1

for a more detailed discussion).

Because of the problem of multiple determinacy, Mills conception has been

complemented by Sir Ronald A. Fisher (1925/1946) and by Jerzy S. Neyman

(1923/1990) in the second and third decades of the last century. Simply speak-

ing, introducing the randomized experiment, Fisher replaced the ceteris paribus

clause (‘everything else invariant’) by the ceteris paribus distributionibus clause:

all other possible causes (the ‘covariates’) having the same distribution. This is

what random assignment of units to treatment conditions secures.

A Metaphor — The Invisible Man and his Shadow

Imagine an invisible man. Although we cannot see him, suppose we know that he

is there, because we can see his shadow. Furthermore, suppose we would like to

measure his size. Doing that, we have two problems, a theoretical and a practical

one. The theoretical problem is to define size. We have to clarify that we do not
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mean ‘volume’ or ‘weight’, but ‘height’ — without shoes, and without hat and

hair. Unfortunately, actual height varies slightly in the course of a day. Hence, we

define size to be the average of the actual heights at the different times of the day.

This solves the theoretical problem; now we know what we want to measure.

However, because the man is invisible, we cannot measure his size directly —

and this is not only because his size slightly varies over the day. The crucial prob-

lem is that we can only observe his shadow. And this is the practical problem: How

to determine his size from his shadow? Sometimes, there is almost no shadow at

all, sometimes it is huge. Some geometrical reflection yields a first simple solu-

tion: measuring the shadow when the sun has an angle of 45°. But what if it is

winter and the sun does not reach this angle and if traveling to another point of

the earth is too expensive? Now we need more geometrical knowledge, taking into

account the actual angle of the sun and the observed length of the shadow. This

will yield an exact measure of the size of the invisible man as well.

Determining a causal effect we face the same kind of problems. First, we have

to define a causal effect, and second, we have to find out how to determine it from

empirical estimable parameters such as true means, i. e., from expectations. The

simple solution — corresponding to the 45° angle of the sun in the metaphor —

is the perfect randomized experiment. The sample mean differences we see in

a randomized experiment only randomly deviate from the causal effect (due to

random sample variation). In contrast, in quasi-experiments and observational

studies, solutions to the practical problem are more sophisticated. They are also

more sophisticated than in the problem of the invisible man, because it is not

only one other variable (the angle) that determines the length of the shadow; in-

stead there often are many other variables systematically determining the sample

means as well as the true means that are estimated by these sample means. This

is again the problem of multiple determinacy.

This book presents a solution to the theoretical and the practical problems

mentioned above. Unfortunately, both solutions are not as simple and obvious

as in our metaphor. Furthermore, there is not only one single kind of causal ef-

fects. (In the paragraphs above we referred to total causal effects.) To our knowl-

edge, the first pioneer tackling the theoretical and the practical problems was

Jerzy S. Neyman (1923/1990).

Individual and Average Causal Effects

While Fisher introduced the design technique of randomization, Neyman intro-

duced the concepts of individual and average causal effects, thus attempting a

first solution to the theoretical problem mentioned above. (Note, however, that

he used different terms for these concepts). He assumed that, for each individ-

ual plot, there is an intra-individual (plot-specific) distribution of the outcome

variable, say Y , under each treatment. He then simply defined the individual

causal effect of treatment x compared to treatment x ′ to be the difference between

the intra-individual (plot-specific) expectation of Y (the “true yield”) given treat-

ment (“variety”) x and the intra-individual (plot-specific) expectation of Y given
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treatment (“variety”) x ′. Having defined the individual causal effect, the average

treatment effect is simply the expectation of the corresponding individual (plot-

specific) causal effects in the population of observational units (plots). Similarly,

several kinds of conditional effects can be defined, conditioning, for instance, on

covariates, i. e ., on other causes of Y that cannot be affected by X , such as mea-

sures of the quality of the soil, average hours of sunshine, average hours of rain,

etc.

Total, Direct, and Indirect Effects

At about the same time as Neyman and Fisher developed their ideas, Sewall

Wright (Wright, 1918, 1921, 1923, 1934, 1960a, 1960b) developed his ideas on path

analysis and the concepts of total, direct, and indirect effects. While his total effect

aims at the same idea as the average causal effect, his direct and indirect effects

were new. Simply speaking, in the context of an experiment or quasi-experiment,

a direct effect of the treatment is the effect that is not transmitted through an in-

termediate variable; it is the conditional effect of the treatment variable holding

constant the intermediate variable on one of its values. In contrast, the indirect

effect is the difference between the total effect and the direct effect.

Fundamental Problem of Causal Inference

Whereas the basic ideas outlined above are relatively simple and straightforward,

trying to put them into practice — i. e., solving the practical problem mentioned

above — is often difficult and needs considerable sophistication. The “funda-

mental problem of causal inference” (Holland, 1986) is that we cannot expose

an observational unit to treatment 1 and, at the same time, to treatment 0. How-

ever, this is exactly what is necessary if we want to be sure that ‘everything else is

invariant’, a clause that is also an implicit idea in the solution proposed by Ney-

man.

Pre-Post Designs

If we choose to first observe a unit under ‘no treatment’ and then observe it again

after ‘treatment’, we may be tempted to interpret the pre-post differences as es-

timates of the individual causal effects of the treatment given in between. How-

ever, this interpretation might be wrong, because the unit may have developed

(maturated, learned), may have suffered from critical life events, may have expe-

rienced historical change, etc. (see, e. g., Campbell & Stanley, 1963; Cook & Camp-

bell, 1979; Shadish et al., 2002). Hence, in these pre-post designs or synonymously,

within-group designs, we have to make assumptions on the nature of these possi-

ble alternative interpretations of the pre-post comparisons, e. g., that they do not

hold in the application considered or that they have a certain structure that can

be taken into account when making causal inferences based on pre-post com-

parisons.
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Between-Group Designs

If, instead of making comparisons within a unit, we compare different units to

each other in between-group experiments, we certainly lose the possibility of es-

timating the individual causal effects. However, what we can hope for is that we

are still able to estimate the average causal effect and certain conditional causal

effects. But how to estimate the average of the individual causal effects if the in-

dividual causal effects are not estimable? Both, between-group experiments and

quasi-experiments, have a set of (observational) units, at least two experimental

conditions (‘treatment conditions’, ‘expositions’, ‘interventions’, etc.), and at least

one outcome variable (‘response’, ‘criterion’, ‘dependent variable’) Y . In the med-

ical sciences, the units are usually patients. In psychology the observational units

are often persons, but it could be persons-in-a-situation, or groups as well. In

economics it could be subjects, companies, or countries, for instance. In educa-

tional sciences the units might be school classes, schools, communities, districts,

or countries. In sociology and the political sciences, the units could be persons,

but also communities, countries, etc.

Scope of the Theory

In order to delineate the scope of the theory, consider the following kind of ran-

dom experiment : Draw an observational unit u (e. g., a person) out of a set of

units, observe the value z of a (possibly multivariate qualitative or quantitative)

covariate Z for this unit, assign the unit or observe its assignment to one of sev-

eral experimental conditions, observe the value m of an intermediate variable

M , and record the numerical value y of the outcome variable Y . We will use U

to denote the random variable representing with its value u the unit drawn. Note

that many observations can be made additional to observing U , Z , X , M , and

Y . Although this simple single-unit trial is a prototype of the kind of empirical

phenomena the theory is dealing with, there are other single-unit trials in which

the theory can be applied as well (see ch. 2). In fact, the theory is applicable far

beyond the true experiment and the quasi-experiment. This includes applica-

tions in which the putative causes are not manipulable and in which the putative

cause is a continuous random variable. The theory has its limitations only if there

is no clear ordering of the random variables considered as putative causes or out-

comes.

True Experiments and Quasi-Experiments

The single-unit trial described above is a random experiment, but not necessar-

ily a randomized experiment. A randomized experiment is a special random ex-

periment in which the unit drawn is randomly assigned to one of the treatment

conditions, e. g., depending on the outcome of a coin toss. (In empirical appli-

cations, the single-unit trials are repeated n times, where n denotes the sample

size.) Referring to single-unit trials, we can distinguish the true experiment from
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the quasi-experiment as follows: In the true experiment, there are at least two

treatment conditions and the assignment to one of the treatment conditions is

randomized, e. g., by flipping a coin. In a traditional randomized experiment, for

instance, the treatment probabilities are chosen to be equal for all units. However,

equal treatment probabilities for all units are neither essential for the definition

of the true experiment nor for drawing valid causal inferences. We may as well

have treatment probabilities depending on the units and/or on another covari-

ate (see section 7.5), as long as these treatment probabilities are fixed or known by

the researcher. Note, however, that in designs, in which different units have dif-

ferent treatment probabilities, standard data analysis techniques such as t-tests

or analysis of variance do not test the correct hypotheses any more.

For between-group designs, the quasi-experiment may be defined such that

there are at least two treatment conditions; however, in contrast to the true exper-

iment, the treatment probabilities are unknown. Nevertheless, valid causal infer-

ences can be drawn in quasi-experiments provided that we can rely on certain

assumptions. In specific applications these assumptions might be wrong. If they

are actually wrong, causal inferences can be completely wrong as well.

Beyond Experiments and Quasi-Experiments

As it turns out, formalizing the ideas outlined above in probabilistic terms re-

sults in a theory of probabilistic causality that is applicable far beyond experi-

ments and quasi-experiments, thus bringing together the experimental tradition

of Fisher and Neyman on one side and Wright’s observational studies tradition

on the other side. Furthermore, causal dependencies of manifest variables mea-

suring latent variables as well as causal dependencies between latent variables

can be treated in the framework presented in this book. Hence, the scope of the

theory also includes what in the past has been addressed only within structural

equation modeling (see, e. g., Bentler & Wu, 2002; Jöreskog & Sörbom, 1996/2001;

Muthén & Muthén, 1998-2007) and/or graphical modeling (see, e. g., Pearl, 2009;

Spirtes, Glymour, & Scheines, 2000). Furthermore, specific psychometric prob-

lems such as ‘differential item functioning’ and ‘measurement invariance’ turn

out to be problems of causal modeling that can be treated within the same the-

oretical framework as the analysis of causal effects in experimental and quasi-

experimental designs.

Who Should Study This Book?

The Methodologist

In the first place, we would like to address the methodologist, i. e., the expert in

empirical research methodology, especially in the social, economic, behavioral,

cognitive, medical, agricultural, and biological sciences. This book provides an-

swers to some of the most important and fundamental questions of these empir-

ical sciences: What do we mean by terms like ‘X affects Y ’, ‘X has an effect on Y ’,
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‘X influences Y ’, ‘X leads to Y ’, etc. used in our informal theories and hypothe-

ses? How can we translate these terms into a language that is compatible with the

statistical analysis of empirical data? How to design a study and how to look at

the resulting data if we want to probe our theories empirically and learn about

the causal dependencies postulated in these theories and hypotheses? And last

but not least: How to evaluate interventions, treatments, or expositions to (possi-

bly detrimental) environments and learn about how effective they are for which

kind of subjects or observational-units, and under which circumstances?

The Statistician

Many statisticians believe that causality is beyond their horizon. Causality might

be a matter of empirical researchers and philosophers, they say, but not their

own. They think that it cannot be treated mathematically and therefore a statisti-

cian cannot be helpful. As a consequence, they ignore the issue of causality. Read-

ing this book will prove that all these beliefs should be abandoned. Probabilistic

causality, as presented here, is a branch of probability theory, which itself, at least

since Kolmogorov (1956), is a part of pure mathematics — although with an enor-

mous potential for applications in many empirical sciences and even beyond.

The main purpose of this book is to translate the informal concepts about causal-

ity shared by many methodologists and applied statisticians into the well-defined

terms of mathematical probability theory. The principle is not to use any unde-

fined term, and the result is a pure mathematical theory of probabilistic causality.

Of course, this will make it harder for the methodologist and those not yet trained

in probability theory. However, the reward is a much deeper understanding of

what is essential and a much better grasp of the nature of our theories about the

real world.

Of course, undefined terms are still used in this book, but only in the exam-

ples, in the interpretations, and in the motivations of the definitions. The theory

itself is pure mathematics, just in the same way as Kolmogorov’s probability the-

ory presented in 1933, which explicated the mathematical, measure-theoretical

structure of probabilistic concepts. Substantive meaning only results if we inter-

pret the core components of the formal structure in a specific random experi-

ment considered. And this is also true for the theory of probabilistic causality

presented in this book.

The Empirical Scientist

The empirical scientist in the fields mentioned above has at least two good rea-

sons to study this book. The first is that some crucial parts of his theories and

hypotheses are explicated, at least when it comes to considering a concrete ex-

periment or study. The ambiguity in causal language such as ‘X affects Y ’, ‘X

has an effect on Y ’, ‘X influences Y ’, ‘X leads to Y ’ are not necessary any more.

Reading this book will make it possible to replace these ambiguous terms by well-
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understood and well-defined terms, improving quality of empirical research and

theories.

The second motivation of the empirical scientist is that even if he knows his

own theoretical concepts and hypotheses, he still has to know how to design ex-

periments and studies that enable him to test them. Furthermore, the standard

ways of analyzing data offered in the textbooks of applied statistics and in the

available computer programs often do not estimate and test the correct causal

effects and dependencies. And this is not only bad for the empirical scientist but

also for all those relying on the validity of his inferences and his expertise. Just

think about all the harmful consequences of wrong causal theories in various em-

pirical research fields, if they are applied to solving concrete problems!

The Experimental Scientist

This book has two messages for those who do their research with experiments,

a good one and a bad one. The good news is that, in perfect randomized experi-

ments, the average causal total treatment effect is indeed estimated when com-

paring means between two different treatment conditions. The bad news is that

we can not rely on randomized assignment of units to treatment conditions when it

comes to estimating direct and indirect effects. More specifically, in such an anal-

ysis it is usually not sufficient to consider intermediates, treatment and outcome

variables. Instead we also have to include in our analysis pre-treatment variables

such as a pre-test of the intermediate and a pre-test of the outcome variable and

apply adjustment methods, very much in the same way as we have to use these

techniques in quasi-experiments — even though we have randomized! Hence if

you want to look into the black box between the treatment and the outcome vari-

ables, you have to adopt the techniques of causal modeling that are far beyond

traditional comparisons of means and analysis of variance.

The Philosopher of Science

Philosophers of science study and teach the methodology of empirical sciences.

In that respect, their task is very similar to that of the methodologist, perhaps

only more general and less specific for a certain discipline. Therefore, it is not

surprising that probabilistic causality has also been tackled by philosophers of

science (see, e. g., Cartwright, 1979; Spohn, 1980; Stegmüller, 1983; Suppes, 1970).

Compared to these approaches, our emphasis is more on those parts of the theory

that have implications for the design of empirical studies and the analysis of data

resulting from such studies.

The Students in These Fields

We believe that probabilistic causality is the most rewarding topic in methodol-

ogy. Although it is tough to get into it, you will get insights why all this method-

ology stuff was useful and what it was good for. At least this is what our students
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say at the end of our curriculum, even if they did not have the choice whether or

not to take our course on probabilistic causality.

Research Traditions in Stochastic Causality

Several research traditions have been contributing to the theory probabilistic

causality in various ways. From the Neyman-Rubin tradition, we adopted the

idea that it is important to define various causal effects such as individual, condi-

tional, and average causal effects, even though we modified and extended these

concepts in important aspects. Defining causal effects is important for proving

that certain methods of data analysis yield estimates of these effects if certain as-

sumptions can be made. Are there conditions under which the analysis of change

scores (between pre- and post-tests) and repeated-measures analysis of vari-

ance yield causal effects? Under which conditions do we test causal effects in

the analysis of covariance? Which are the assumptions under which propensity

score methods yield estimates of causal effects? Which are the assumptions un-

der which an instrumental variable analysis estimates a causal effect? All these

questions and their answers presuppose that we have a clear definition of causal

effects and/or of causal probabilistic dependencies.

From the Campbellian tradition (see, e. g., Campbell & Stanley, 1966; Cook

& Campbell, 1979; Shadish et al., 2002) we learned that there are questions and

problems beyond stochastic causality itself that are relevant in empirical causal

research, such as: How to generalize beyond the study? What does the treatment

variable mean? What is the meaning of the outcome variable? And, perhaps the

most important question: Are there alternative explanations for the effect? The

vast majority of social scientists (including ourselves) have been educated in this

research tradition to some degree. Although this training is still very useful as a

general methodology framework, it lacks precision and clarity in a number of is-

sues — and causality is one of these.

From the graphical modeling tradition (see, e. g., Cox & Wermuth, 2004; Pearl,

2009; Spirtes et al., 2000), we learned that conditional independence plays an im-

portant role in causal modeling. This research tradition has also been develop-

ing techniques to estimate causal effects and to search for causal models if spe-

cific assumptions can be made. The fact that randomization in a true experiment

in no way guarantees the validity of causal inferences on direct effects has been

brought up by this research tradition.

Structural equation modeling and psychometrics have been teaching us how

to use latent variables and structural equation modeling in testing causal hy-

potheses. Due to a number of statistical programs such as AMOS (Arbuckle,

2006), EQS (Bentler, 1995), lavaan (Rosseel, 2012), LISREL (Jöreskog & Sörbom,

1996/2001), Mplus (Muthén & Muthén, 1998-2007), OpenMx (OpenMx, 2009),

RAMONA (Browne & Mels, 1998), structural equation modeling became extremely

popular in the Social Sciences. Although many users of these programs hope to

find causal answers, it should be clearly stated that structural equation modeling

— and this is true for all kinds of statistical models (including analysis of vari-
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ance) — does neither automatically estimate and test causal effects, nor does it

provide a satisfactory theory of causal effects and dependencies. Nevertheless,

this research tradition contributes — just like other areas of statistics — a num-

ber of statistical techniques that can be very useful in causal modeling.

In this book, we also aim at embedding — and, where necessary, extending —

conventional statistical procedures such as analysis of covariance, nonorthogo-

nal analysis of variance, and latent variable modeling, but also more recent tech-

niques based on propensity scores, or on instrumental variables into a coherent

theory of probabilistic causality.

How to Use This Book

This book is self-contained. It is written such that standard mathematical prob-

ability theory is sufficient for a complete understanding, provided one takes the

time that these topics require. In many parts, this is not a book one can just read;

instead it is a book to be studied. This includes working on the questions and ex-

ercises. We presume that the reader is familiar with — or learns while studying

this book — the essentials of probability theory, including conditional expecta-

tions, as well as conditional independence and conditional distributions. These

essentials of probability theory are dealt with in Steyer and Nagel (in press-a).

We devoted this book almost entirely to the theory of causal effects and prob-

abilistic causality, although, in chapter 13, we outline the implications of the

theory for design and for data analysis in experiments and quasi-experiments.

We also developed the PC program Causal Effects Explorer (Nagengast, Kröhne,

Bauer, & Steyer, 2007) that can be used for exploring prima facie effects, con-

ditional and average total effects given certain parameters. We believe that this

program is useful for teaching and learning the fundamentals of the theory. Fur-

thermore, the program EffectLiteR (Mayer, Dietzfelbinger, Rosseel, & Steyer, in

press), can be used to estimate total, direct, and indirect effects from empiri-

cal data in experiments and quasi-experiments. Both programs, which are avail-

able at www.causal-effects.de, may be used together with this book in a course on

causal modeling. In fact, this is the content of our workshops on the analysis of

total, direct, and indirect causal effects, which are available both as videos-on-

demand on the internet and on DVDs, again at www.causal-effects.de.
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Part I

Introduction





Chapter 1

Introductory Examples

For more than a century there have been examples in the statistical literature

showing that comparing means or comparing probabilities (e. g., of success of

a treatment) between a group exposed to a treatment and a comparison group

(unexposed or exposed to a different treatment) does not necessarily answer

our questions: ‘Which treatment is better overall?’ or ‘Which treatment is better

for which kind of person?’ Differences between means and differences between

probabilities (or any other comparison between probabilities such as odds ra-

tios, log odds ratios, or relative risk) are usually not the treatment effects we are

looking for (see, e. g., Pearson, Lee, & Bramley-Moore, 1899; Yule, 1903; Simpson,

1951). They are just effects at first sight or “prima facie effects” (Holland, 1986).

Just like the shadow in the metaphor of the invisible man (see the preface),

prima facie effects reflect the effects of the treatment (the size of the invisible

man), but also of other causes (the angle of the sun). The goal of analyzing causal

effects is to estimate the effect of the treatment alone, isolating it from other po-

tential influences, e. g., of sex, educational background, socio-economic status,

etc. The general idea is to compute a treatment effect that is not biased by differ-

ences between treatment groups that would also exist without treatment.

Overview

We will illustrate systematic bias in determining total treatment effects in quasi-

experiments by two examples. The first one deals with a dichotomous outcome

variable, the second with a quantitative one. While the problems described in

these two examples cannot occur in a randomized experiment, our third example

will show that the randomized assignment of units to treatment conditions does

not help to prevent systematic bias in determining direct treatment effects with

respect to an intermediate variable that may transmit the effects of the treatment

on the outcome variable.

1.1 Example 1 — Simpson’s Paradox

In our first example, the prima facie effect reverses if we switch from comparing

P (Y=1 |X=1) to P (Y=1 |X=0), the conditional probabilities of success between

treatment and control, to comparing P (Y=1 |X=1, Z=z) to P (Y=1 |X=0, Z=z),
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Table 1.1. Joint Probabilities of Treatment and Success

Treatment

Success No (X=0) Yes (X=1)

No (Y=0) .240 .232 .472

Yes (Y=1) .360 .168 .528

.600 .400 1.000

the corresponding probabilities additionally controlling for Z = sex with values

m (males) and f (females). This kind of phenomenon, which is already known at

least since Yule (1903), is called Simpson’s paradox (Simpson, 1951), and it is still

being debated (see, e. g., Hernán, Clayton, & Keiding, 2011).

1.1.1 Prima Facie Effect

Table 1.1 shows the joint distribution of treatment and success, i. e., the joint

probabilities P (X=x,Y=y ) of treatment and success, as well as the marginal

probabilities P (X=x) and P (Y=y) of treatment x and success y , respectively.

Comparing the conditional probability of success (Y=1) given the treatment con-

dition (X=1) to the conditional probability of success given the control condition

(X=0) would lead us to the conclusion that the treatment is harmful. These two

conditional probabilities can be computed by

P (Y=1 |X=1) =
P (Y=1, X=1)

P (X=1)
=

.168

.168+ .232
= .42
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Figure 1.1. Probability of success given treatment
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and

P (Y=1 |X=0) =
P (Y=1, X=0)

P (X=0)
=

.360

.360+ .240
= .60,

respectively (see, e. g., Steyer & Nagel, in press-a, section 4.2). Figure 1.1 displays

both conditional probabilities in a histogram.

These two conditional probabilities can be compared to each other in different

ways. The simplest one is looking at the difference P (Y=1 |X=1)−P (Y=1 |X=0).

This is a particular case of the difference E (Y |X=1)−E (Y |X=0) between two

conditional expectation values, in which the outcome variable Y is dichotomous

with values 0 and 1. Following Holland (1986), we will call this difference the (un-

conditional) prima facie effect and use the notation PFE10. Other possibilities of

comparing the two conditional probabilities are to look at the odds ratio, or the

logarithm of the odds ratio (see chapter 4 of Rothman, Greenland, & Lash, 2008,

for a detailed discussion of these and other effect parameters).

1.1.2 Prima Facie Effects Controlling for Sex

The conclusion about the effect of the treatment is completely different if we look

at the dependencies separately for males and females. Table 1.2 (p. 6) shows the

joint distributions of treatment, success and Z := sex with values 0 (male) and

1 (female). The probabilities of the two values are P (Z=0) = P (Z=1) = .50. Ac-

cording to this table, the probability of success for the males in the treatment

condition is

P (Y=1 |X=1, Z=0) =
.016

.016+ .004
= .80

(see Exercise 1-7), whereas the probability of success in the control condition is

P (Y=1 |X=0, Z=0) =
.336

.336+ .144
= .70.

Hence, the difference

P (Y=1 |X=1, Z=0) − P (Y=1 |X=0, Z=0) (1.1)

is .80−.70 = .10, which may lead us to conclude that the treatment is beneficial for

males. Again, because Y is dichotomous with values 0 and 1, this difference is a

particular case of the difference PFE10 ; Z=0 := E (Y |X=1, Z=0)−E (Y |X=0, Z=0),

which we call the conditional prima facie effect given Z=0.

What about the treatment effects for females? Table 1.2 shows that the proba-

bility of success for the females in the treatment condition is .152/(.152+ .228) =

.40, whereas it is .024/(.024 + .096) = .20 in the control condition. Figure 1.2

shows these conditional probabilities in a histogram. Considering the difference

.40− .20 = .20 may lead us to conclude that the treatment is also beneficial for

females.

Hence, we can conclude that the treatment seems to be beneficial for both,

males and females. This, however, seems to contradict our finding ignoring sex.

Just considering the difference E (Y |X=1)−E (Y |X=0), the treatment seemed to

be harmful.
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Table 1.2. Joint Probabilities of Treatment, Sex and Success

Males (Z=0); P(Z=0) = 0.50

Treatment

Success No (X=0) Yes (X=1)

No (Y=0) .144 .004 .148

Yes (Y=1) .336 .016 .352

.480 .020 .500

Females (Z=1); P(Z=1) = 0.50

Treatment

Success No (X=0) Yes (X=1)

No (Y=0) .096 .228 .324

Yes (Y=1) .024 .152 .176

.120 .380 .500

1.1.3 Prima Facie Effect vs. Average of the Prima Facie Effects

In contrast to our intuition, the prima facie effect E (Y |X=1)−E (Y |X=0) is nei-

ther the simple average nor any weighted average of the corresponding prima fa-
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Figure 1.2. Probabilities of success given treatment (and sex)
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cie effects E (Y |X=1, Z=z)−E (Y |X=0, Z=z) controlling for Z = sex. This is now

studied in more detail.

Prima Facie Effect

The probability P (Y=1|X=0) of success in the control condition is the sum of the

corresponding probabilities, P (Y=1|X=0, Z=0) and P (Y=1|X=0, Z=1), weighted

by the conditional probabilities P (Z=0|X=0) and P (Z=1|X=0), respectively, i. e.,

P (Y=1 |X=0) = P (Y=1 |X=0, Z=0) ·P (Z=0 |X=0) +

P (Y=1 |X=0, Z=1) ·P (Z=1 |X=0)

= .70 ·
.48

.60
+ .20 ·

.12

.60
= .60

[see Box 9.2 (ii) of Steyer & Nagel, in press-a, and Exercise 1-8]. Because the

difference between the conditional probabilities P (Z=0 | X=0) = .48/.60 and

P (Z=1 |X=0) = .12/.60 is large, the probability of success in treatment 0 is much

closer to .70 than to .20 (see the dots above X=0 in Fig. 1.3).

Similarly, the probability P (Y=1 |X=1) of success in the treatment condition

(X=1) is the sum of the two corresponding probabilities, P (Y=1 |X=1, Z=0) and

P (Y=1 |X=1, Z=1), weighted by the conditional probabilities P (Z=0 |X=1) and

P (Z=1 |X=1), respectively, i. e.,

P (Y=1 |X=1) = P (Y=1 |X=1, Z=0) ·P (Z=0 |X=1) +

P (Y=1 |X=1, Z=1) ·P (Z=1 |X=1)

= .80 ·
.02

.40
+ .40 ·

.38

.40
= .42.

Hence, the prima facie effect is P (Y=1 |X=1)−P (Y=1 |X=0) = .42− .60. = −.18.

Because the two conditional probabilities P (Z=0 |X=1) = .02/.40 and P (Z=1 |

X=1) = .38/.40 are very different, the probability of success in treatment 1 is

much closer to .40 than to .80 (see the dots above X=1 in Fig. 1.3). (The size of

the area of the dotted circles represent the joint probabilities P (X=x, Z=z). For

X=1 and Z=0, this probability is very small such that the circle is not visible. This

kind of graphics has been adopted from Agresti, 2007).

Average of the Conditional Prima Facie Effects

In contrast to the prima facie effect, the average of the conditional prima facie

effects is the expectation of the function PFE10 ; Z , the values of which are the two

prima facie effects PFE10 ; Z=0 and PFE10 ; Z=1 for males and females, i. e.,

E (PFE10 ; Z ) =
∑

z

PFE10 ; Z=z ·P (Z=z). (1.2)

Because the conditional prima facie effect of the treatment is PFE10 ; Z=0 = .10 for

males and PFE10 ; Z=1 = .20 for females, the average prima facie effect is simply:
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Figure 1.3. Probabilities of success given treatment and sex

E (PFE10 ; Z ) = .10 ·P (Z=0)+ .20 ·P (Z=1) = .10 ·
1

2
+ .20 ·

1

2
= .15.

Hence, whereas the prima facie effect E (Y |X=1)−E (Y |X=0) is negative, namely

−.18, the average of the (Z=z)-conditional prima facie effects E (Y |X=1, Z=z)−E (Y |X=0, Z=z)

is positive, namely .15.

1.1.4 How to Evaluate the Treatment?

Because the conclusions drawn from the differences E (Y |X=1)−E (Y |X=0) and

E (Y |X=1, Z=z)−E (Y |X=0, Z=z) are contradictory, which of these comparisons

should we trust? Is the treatment harmful — as E (Y |X=1)−E (Y |X=0) suggests?

Or is it beneficial as suggested by the differences E (Y |X=1, Z=z)−E (Y |X=0, Z=z)?

Which of these comparisons are meaningful for evaluating the causal effect of the

treatment? Before we come back to these questions, let us consider another ex-

ample.

1.2 Example 2 — Nonorthogonal Two-Factorial Experiment

In this section, we treat an example with three treatment conditions, three values

of a discrete covariate, and a quantitative outcome variable. In this example, we

use a 3×3 factorial design with crossed, non-orthogonal factors. The analysis of

such designs has been puzzling many statisticians (see, e. g., Aitkin, 1978; Appel-

baum & Cramer, 1974; Carlson & Timm, 1974; Gosslee & Lucas, 1965; Jennings &

Green, 1984; Keren & Lewis, 1976; Kramer, 1955; Overall & Spiegel, 1969, 1973b,
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Table 1.3. Conditional Expectations Given Treatment

Expectation of Y in Treatment

treatment conditions probabilities

Treatment E(Y |X=x ) P(X=x )

X=0 (Control) 111.25 1/3

X=1 (Treatment 1) 100.00 1/3

X=2 (Treatment 2) 114.25 1/3

E(Y ) 108.50

1973a; Overall, Spiegel, & Cohen, 1975; Williams, 1972), and it continues to do so

(see, e. g., Langsrud, 2003; Nelder & Lane, 1995).1

1.2.1 Prima Facie Effects

In the example presented in Table 1.3, there are three treatment conditions repre-

senting two treatments and a control. The outcome variable Y is now a quantita-

tive measure of success. The expectations of the outcome variable Y in the three

treatment conditions are displayed in Table 1.3. The ratios in the last column are

the treatment probabilities P (X=x) which are, in this example, the same for all

three treatment conditions. However, although the probabilities P (X=x) are the

same for all three groups, this is not a randomized design as will become obvi-

ous if we look at the second factor and the ‘cell probabilities’ (see Table 1.4). Dis-

cussing the example at the level of conditional expectation values will again make

clear that the contradictory inferences are not due to errors in statistical inference

(from sample statistics to true parameters), but due to errors in causal inference,

i. e., they are due to the misinterpretation of the differences between the expec-

tations E (Y |X=x) of the outcome variable Y in the three treatment conditions as

causal effects.

If our evaluation of the treatment effects were based on these differences be-

tween the expectations of Y in the three treatment conditions, we would con-

clude that there are two treatment effects: a negative effect (namely, 100.00 −

111.25 = −11.25) of treatment 1 compared to the control, and a positive effect

(namely, 114.25−111.25 = 3.00) of treatment 2 compared to the control.

1 In fact, none of the statistical packages such as SAS, SysStat, or SPSS with their Type I, II, III or IV

sums of squares provide correct estimates and tests of the average effects (or main effects) for such

a design unless the covariate (the second factor) has a uniform distribution, with equal probabilities

for all values of the covariate. In this case Type III analysis yields correct results, at least, if the second

factor is assumed to be fixed. However, in most applications in the Social Sciences, the covariate (sec-

ond factor) is not fixed but stochastic with varying sample means, etc. In chapter 13, we will outline a

correct analysis including the average total effects.
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Table 1.4. Conditional Expectations Given Treatment and Neediness

Neediness

Treatment Low (Z=0) Medium (Z=1) High (Z=2)

X=0 120 (20/120) 110 (17/120) 60 (3/120) (40/120)

X=1 100 (7/120) 100 (26/120) 100 (7/120) (40/120)

X=2 80 (3/120) 90 (17/120) 140 (20/120) (40/120)

(30/120) (60/120) (30/120)

Note. Probabilities P(X=x , Z=z), P(Z=z), and P(X=x) in parentheses.

1.2.2 Prima Facie Effects Controlling for Neediness

A second way to evaluate the ‘effects’ of the three treatment conditions is to look

at the differences between the expectations of Y in the three treatment condi-

tions within each of the three classes of neediness for the therapy: low, medium,

and high. Table 1.4 displays the expectations of the outcome variable Y in the

nine cells of the 3×3 design. The ratios in parentheses are the probabilities that

the pairs (x, z) of values of X and Z are observed. Hence, this table contains the

conditional expectation values (true cell means) of the outcome variable Y , and

the probabilities P (X=x, Z=z) determining the true joint distribution of X and

Z .

In the low neediness condition (Z=0), there are large negative effects, both of

treatment 1 and of treatment 2 compared to the control:

PFE10 ; Z=0 := E (Y |X=1, Z=0)−E (Y |X=0, Z=0) = 100−120 = −20

and

PFE20 ; Z=0 := E (Y |X=2, Z=0)−E (Y |X=0, Z=0) = 80−120 = −40.

In the medium neediness condition (Z=1), there are also negative effects of treat-

ment 1 and of treatment 2 compared to the control:

PFE10 ; Z=1 := E (Y |X=1, Z=1)−E (Y |X=0, Z=1) = 100−110 = −10

and

PFE20 ; Z=1 := E (Y |X=2, Z=1)−E (Y |X=0, Z=1) = 90−110 = −20.

Finally, in the high neediness condition (Z=2), the effects of treatment 1 and treat-

ment 2 are both positive:

PFE10 ; Z=2 := E (Y |X=1, Z=2)−E (Y |X=0, Z=2) = 100−60 = 40

and
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Figure 1.4. Conditional expectation values of Y given treatment and neediness

PFE20 ; Z=2 := E (Y |X=2, Z=2)−E (Y |X=0, Z=2) = 140−60 = 80.

Based on these comparisons, we can conclude that the ‘effects’ of the treatments

depend on the neediness of the subjects: the differences between the expecta-

tions of Y are negative for subjects with low and medium neediness, and they are

positive for the subjects with high neediness.

1.2.3 Prima Facie Effects vs. Average of the Prima Facie Effects

There is no doubt that the conditional effects given neediness, which are some-

times also called simple effects, are more informative than average treatment ef-

fects if we want to know which treatment is the best for which level of neediness.

Nevertheless, we might ask: What are the ‘treatment effects’ on average? Or, in

other words which are the ‘main effects’? In fact, all major statistical programs

compute ‘main effects’ (see Langsrud, 2003 for a list on which program suggests

what solution to this problem). Note that we have two average effects in this ex-

ample, because we can compare treatment 1 and treatment 2 to the control. Be-

cause we already looked at the corresponding conditional effects, we just have

to compute their averages, i. e., the expectations of these conditional effects over

the distribution of neediness:

E (PFE10 ; Z ) =
∑

z
PFE10 ; Z=z ·P (Z=z) = −20 ·

1

4
+ (−10) ·

1

2
+40 ·

1

4
= 0.

Hence, the average effect of treatment 1 compared to the control is zero.

Comparing treatment 2 to the control yields on average:
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E (PFE20 ; Z ) =
∑

z
PFE20 ; Z=z ·P (Z=z) = −40 ·

1

4
+ (−20) ·

1

2
+80 ·

1

4
= 0.

According to this result, the average effect of treatment 2 compared to the control

is zero as well.

1.2.4 How to Evaluate the Treatment?

To summarize, we discussed three ways that may, at first sight, be used to evalu-

ate the treatment effects: First, we may compare the differences between the ex-

pectations E (Y |X=x) of the outcome variable in the three treatment conditions

X=0, X=1, and X=2. Second, we may consider the corresponding differences be-

tween the conditional expectation values E (Y |X=x, Z=z) within each of the three

values Z=0, Z=1, and Z=2 of neediness. Third, we may compare the averages of

these differences between the conditional expectation values over the distribu-

tion of Z (see Box 1.1 for a summary of these effects).2 All these comparisons

yield different results. Which of them are meaningful for the evaluation of the

treatment effects? All three of them, or only two, just one, or none at all?

1.3 Example 3 — Direct Effect in a Randomized Experiment

The problems described in the examples treated in the preceding sections occur

because there are covariates (in the examples, sex and neediness) that are related

to the treatment variable and the outcome variable. Hence, these problems can

not occur in a randomized experiment, in which, by definition, all covariates and

the treatment are (stochastically) independent. Hence, if in a randomized exper-

iment, we are only interested in the total effects of the treatment on the outcome

variable, the effects that are estimated by the differences between means in the

treatment groups are the total effects of the treatment. However, often we are

also interested in the mediation processes producing these total effects. A typical

question in educational research is: ‘Is there a direct effect of the treatment that

is not transmitted through motivation after treatment?’ In medical research we

may ask: ‘Is there a direct effect of the treatment that is not transmitted through

the amount of antibodies?’

1.3.1 Conditional Expectation of Y Given Treatment and Intermediate
Variables

Suppose that Table 1.5 displays the true means, variances, covariances, and cor-

relations of a treatment variable X with values 0 and 1, an intermediate vari-

2 In fact, there are even more than three ways. Types II and III of computing the sums of squares in

nonorthogonal ANOVA are not yet considered in our discussion. In chapter 13, we show that all four

types of computing sums of squares in such a design yield wrong results in our example (see also

Exercise 1-14).
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Table 1.5. Covariances, Correlations, and Expectations (Omitting Pre-Tests)

X M Y

Treatment (yes=1, no=0) X 0.25 .727 .597

Post-test motivation M 5.00 189.00 .893

Post-test achievement Y 5.00 205.70 280.45

Expectations 0.50 90.00 140.00

Note. Correlations (in italics) are rounded.

able M , and an outcome variable Y . (This example is adopted from Mayer,

Thoemmes, Rose, Steyer, & West, 2014.)

First of all, let us consider the conditional expectation E (Y |X , M ), assuming

that it can be written as a linear function of X and M (see Fig. 1.5). In fact, the co-

variance matrix presented in Table 1.5 has been constructed such that this linear-

ity assumption holds. Using the covariances and expectations displayed in this

table, we receive

E (Y |X , M ) ≈ 34.9924−3.7528 ·X +1.1876 ·M (1.3)

(see Exercise 1-12). According to textbook wisdom (see, e. g., MacKinnon, 2008,

but also Baron & Kenny, 1986), the direct effect of X on Y , controlling for M , is

approximately −3.75.

X

Y

M εM

εY

1.19

−3.75

20

Figure 1.5. Path diagram of E(M |X ) and E(Y |X , M )
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Table 1.6. Covariances, Correlations, and Expectations (Including Pre-Tests)

W Z X M Y

Pre-test achievement W 100.00 .850 .000 .495 .740

Pre-test motivation Z 85.00 100.00 .000 .582 .696

Treatment (yes=1, no=0) X 0.00 0.00 0.25 .727 .597

Post-test motivation M 68.00 80.00 5.00 189.00 .893

Post-test achievement Y 124.00 116.50 5.00 205.70 280.45

Expectations 100.00 100.00 0.50 90.00 140.00

Note. Correlations (in italics) are rounded.

1.3.2 Conditional Expectation of Y Given Treatment, Intermediate, and
Pre-Test Variables

Suppose M represents post-test motivation in a randomized experiment designed

to evaluate two teaching methods represented by (X=0) and (X=1), respectively.

In this case, even if not observed, there will be a variable, say Z representing pre-

test motivation with respect to which students will differ before treatment. Fur-

thermore, there will be a variable, say W , representing pre-test achievement with

respect to which students will differ prior to treatment as well. Furthermore, the

two pre-test variables Z and W will be correlated. This is a plausible scenario for

such a teaching experiment, and this is how the complete variance-covariance

matrix and the expectations presented in Table 1.6 have been generated.

Hence, if instead of E (Y |X , M ), we consider the conditional expectation of Y

given X , M , Z , and W , again assuming linearity — and this is how the parameters

presented in Table 1.6 have been generated — we receive

E (Y |X , M , Z ,W ) = .00+10 ·X +0.50 ·M +0.00 ·Z + .90 ·W (1.4)

(see Exercise 1-13). Now the coefficient 10 of X might be interpreted to be the

direct treatment effect, ‘direct’ with respect to the intermediate variable M . It is

the effect of X controlling for the intermediate variable M and for all covariates,

in this example, the two pre-test variables Z and W .

How can we explain this seemingly paradoxical result? How can there be con-

founding in a perfect randomized experiment? The answer is that even though X

and the bivariate random variable (W, Z ) are independent, conditional indepen-

dence of X and (W, Z ) given M does not hold. Instead, conditioning on M induces

conditional dependence of X and Z , if both Z and X are related to M . Intuitively

speaking, because both Z and X affect M , a high value of post-test motivation M

means that both, X and Z tend to be high, whereas a low value of M means that

both, X and Z tend to be low (see Fig. 1.6). Hence, conditioning on M , the treat-

ment variable X and the pre-test motivation Z will be dependent, even though

X and Z are unconditionally independent, due to randomization (see also Pearl,
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2009, ch. 1, p. 17, or Spirtes et al., 2000). This conditional dependence between X

and Z given M is also reflected by a non-zero partial correlation Corr (X , Z ; M )

(see section 11.6 of Steyer & Nagel, in press-a).

1.3.3 Conditional Expectation of Y Given Treatment Variable

Finally, let us consider the average total treatment effect. In this example, in which

X and all covariates are independent, the average total treatment effect is the

coefficient of X in the equation

E (Y |X ) = 130+20 ·X , (1.5)

where the intercept α0 = 130 is obtained by α0 = E (Y )−α1 ·E (X ) = 140−20·0.50 =

130 and the slope by α1 = Cov (X ,Y )/Var (X ) = 5.00/0.25 = 20 [see Steyer & Nagel,

in press-a, Eqs. (12.58) and (12.59)]. Therefore, in this example, the indirect treat-

ment effect is the difference 20−10 = 10. In this model with no interaction, this

indirect effect is also equal to the product 20 · .50 (see Fig. 1.6), which is in accor-

dance with the rules of path analysis developed by Sewall Wright in the twenties

of last century (see, e. g., Wright, 1918, 1921, 1923).

1.3.4 How to Analyze Direct Effects?

We discussed two different ways to analyze the direct effect of the treatment vari-

able on the outcome variable. The first one is recommended in traditional text-

books such as MacKinnon (2008) and in one of the most frequently cited papers

Baron and Kenny (1986). It yields the negative direct effect of −3.75. The second

one also controls for the pre-tests of the intermediate variable and the outcome

variables. This second analysis yields a direct treatment effect of 10. Hence, the

effect is reversed as compared to the first analysis. Which is the correct direct ef-

fect? Or are both wrong?

W

Z

X

Y

M εM

εY.90

.50

.80

10

20

85

Figure 1.6. Path diagram of E(M |X , Z ,W ) and E(Y |X , M , Z ,W )
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1.4 Summary and Conclusions

In this chapter, we treated three examples. In the first example, a dichotomous

treatment variable X has a negative ‘effect’ E (Y |X=1)−E (Y |X=0) on a dichoto-

mous outcome variable Y (‘success’), although the corresponding treatment ‘ef-

fects’ E (Y |X=1, Z=z)−E (Y |X=0, Z=z) are positive if we condition on males

(Z=m) and females (Z= f ). Taking the expectation of these two conditional ef-

fects also yielded a positive ‘effect’. In the second example, there are nonzero

differences E (Y |X=1) − E (Y |X=0) and E (Y |X=2) − E (Y |X=0), where Y is a

quantitative outcome variable, and nonzero conditional ‘effects’ E (Y |X=1, Z=z)

− E (Y |X=0, Z=z) and E (Y |X=2, Z=z) − E (Y |X=0, Z=z) for the different values

of neediness. The expectations of these conditional ‘effects’ over the three need-

iness conditions, i. e., the average ‘effects’, are zero. In the third example, we dis-

cussed two different ways of analyzing the direct treatment effect. The first yields

a negative ‘direct effect’ and the second a positive ‘direct effect’.

The Problem

Because the conclusions drawn from these analyses are contradictory, which of

these should we trust? In Simpson’s paradox: Is the treatment harmful — as the

difference E (Y |X=1)−E (Y |X=0) suggests? Or is it beneficial as suggested by the

differences E (Y |X=1, Z=z)−E (Y |X=0, Z=z), controlling for sex? Which of these

comparisons are meaningful for the evaluation of the causal effects of the treat-

ment? Similarly, in the second example: are there treatment effects, overall? Or are

the effects nil on average? And, are the conditional effects dependable, or could

it be that they would also be reversed if we condition on an additional covari-

ate, such as age or educational status? As demonstrated in Simpson’s paradox,

we can neither expect that the difference E (Y |X=1)−E (Y |X=0) is the average

of the corresponding differences E (Y |X=1, Z=z)−E (Y |X=0, Z=z), nor can we

expect that a difference E (Y |X=1, Z=z)−E (Y |X=0, Z=z) is the average over the

corresponding differences if we condition on an additional covariate such as age.

Note, these questions are not related to statistical inference; they are not raised

at the sample level, but on the level of true parameters!

Hence our examples show that the conditional expectation values and their

differences, the prima facie effects, can be totally misleading in evaluating the ef-

fects of a treatment variable X on an outcome variable Y . This conclusion can

also be extended to conditional probabilities, to correlations and to all other pa-

rameters describing relationships and dependencies between random variables.

They all are like the shadow in the metaphor of the invisible man (see the pref-

ace).

If this is true, is the whole idea of learning from experience — the core of empir-

ical sciences — wrong? Our answer is ‘No’. However, we have to be more explicit in

what we mean by terms like ‘X affects Y ’, ‘X has an effect on Y ’, ‘X influences Y ’,

‘X leads to Y ’, etc. used in our theories and hypotheses. How can these terms be

translated into a language compatible with statistical analyses of empirical data?
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Box 1.1 Glossary of New Concepts

PFExx ′ Prima facie effect of treatment x compared to treatment x ′. It is

defined by

PFExx ′ := E(Y |X=x)−E(Y |X=x ′ ) .

PFExx ′ ; Z=z (Z=z)-Conditional prima facie effect of treatment x compared to

treatment x ′. It is defined by

PFExx ′ ; Z=z := E(Y |X=x , Z=z)−E(Y |X=x ′, Z=z) .

E(PFExx ′ ; Z ) Expectation of the (Z=z)-conditional prima facie effects of treat-

ment x compared to treatment x ′ . It is defined by

E(PFExx ′ ; Z ) :=
∑

z
PFExx ′ ; Z=z ·P(Z=z ).

How to design a study and how to look at the resulting data if we want to probe

our theories empirically and learn about the causal dependencies postulated in

these theories and hypotheses?

We know that a reversal of total effects does not occur in the randomized ex-

periment, i. e., in an experiment in which observational units (in the social and

behavioral sciences, usually the subjects or individuals) are randomly assigned

to one of at least two treatment conditions. In the randomized experiment com-

paring expectation values is informative about total causal treatment effects. But

why? What is so special in the randomized experiment? Which are the conditions

allowing for causal inference in the randomized experiment? Can we create these

conditions also in quasi-experimental studies? How can we estimate causal ef-

fects in quasi-experiments? And why does randomization not help if we analyze

direct treatment effects? Obviously, conclusive answers to these questions can be

hoped for only within a theory of causal effects.

Relevance of the Problem

These questions are of fundamental importance for the methodology of empir-

ical sciences and for the empirical sciences themselves. The answers to these

questions have consequences for the design and analysis of experiments, quasi-

experiments, and other studies aiming at estimating the effects of treatments,

interventions, or expositions on certain outcome variables. No prevention study

can be meaningfully conducted without knowing the concepts of causal effects

and how they can be estimated from empirical data, and the same is true for the

evaluation of institutions such as schools, universities, or clinics with respect to

their effects on the outcomes of their clients. Similarly, without a clear concept
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of causal effects we are not able to learn from our data about the effects of a cer-

tain (possibly harmful) environment on our health, or about the effects of certain

behaviors such as smoking or drug abuse. Again, this is similar to the problem

of measuring the invisible man’s size via the length of his shadow: only with a

clear concept of size, some basic knowledge in geometry, and the additional in-

formation such as the angle of the sun at the time of measurement, are we able

to determine his size from the length of his shadow.

Furthermore, without an explicit theory of causal effects we are not able to

study direct and indirect effects, and this is true even in a perfect randomized ex-

periment. For example, if we are interested in whether or not the effect of vac-

cination is completely transmitted through the amount of a certain type of an-

tibodies, then this cannot be done relying only on the benefits of a perfect ran-

domized trial. Instead we have to apply certain adjustment techniques. In terms

of our metaphor, the 45° angle (the randomized experiment) does not help in de-

termining the parameters we are looking for (the direct effects).

Research Traditions

Of course, raising these questions and attempting answers is not new. Immense

knowledge and wisdom about experiments and quasi-experiments has been col-

lected in the Campbellian tradition of experiments and quasi-experiments (see,

e. g., Campbell & Stanley, 1963; Cook & Campbell, 1979; Shadish et al., 2002). In

the last decades, a more formal approach has been developed supplementing the

Campbellian theory and terminology in important aspects: the theory of causal

effects in the Neyman-Rubin tradition (see, e. g., Splawa-Neyman, 1923/1990; Ru-

bin, 1974, 2005). Many papers and books indicate the growing influence of this

theory (see, e. g., Greenland, 2000, 2004; Höfler, 2005; Rosenbaum, 2002; Rubin,

2006; Winship & Morgan, 1999; Morgan & Winship, 2007) and formidable efforts

have already been made to integrate it into the Campbellian framework (West,

Biesanz, & Pitts, 2000). Furthermore, these questions have also been dealt with in

the graphical modeling tradition (see, e. g., Pearl, 2009; Spirtes et al., 2000) as well

as in biometrics, econometrics, psychometrics, and other fields dealing with the

methodology of empirical research fields.

Outlook

In this book, we present the theory of total, direct, and indirect causal effects in

terms of classical probability theory. We show that a number of questions that

have been debated controversially and inconclusively can now be given a clear-

cut answer. What kinds of causal effects can be meaningfully defined? Which de-

sign techniques guarantee unbiased estimation of causal effects? How to ana-

lyze nonorthogonal ANOVA designs (cf., e. g., Aitkin, 1978; Appelbaum & Cramer,

1974; Gosslee & Lucas, 1965; Maxwell & Delaney, 2004; Overall et al., 1975)?

How to analyze non-equivalent control-group designs (cf., e. g., Reichardt, 1979)?

Should we compare pre-post differences between treatment groups (cf., e. g.,
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Lord, 1967; Senn, 2006; van Breukelen, 2006; Wainer, 1991)? Should we use analy-

sis of covariance to adjust for differences in treatment and control that already

existed prior to treatment (cf., e. g., Maxwell & Delaney, 2004; Cohen, Cohen,

West, & Aiken, 2003)? Should we use new techniques such as propensity score

methods instead of the more traditional procedures mentioned above (cf., e. g.,

Rosenbaum & Rubin, 1984)? How do we deal with non-compliance to treatment

assignment (cf., e. g., Cheng & Small, 2006; Dunn et al., 2003; Jo, 2002a, 2002b,

2002c; Jo, Asparouhov, Muthén, Ialongo, & Brown, 2008; J. Robins & Rotnitzky,

2004; J. M. Robins, 1998)? How to analyze direct and indirect effects? We do not

treat the statistical sampling models with their distributional assumptions, their

implications for parameter estimation, and the evaluation (or tests) of hypothe-

ses about these parameters. However, in chapter 13 we discuss the virtues and

problems of general strategies of data analysis such as the analysis of difference

scores, analysis of covariance, its generalizations, analysis based on propensity

scores, and instrumental variables.

1.5 Exercises

⊲ Exercise 1-1 Why do we need the concept of a causal treatment effect?

⊲ Exercise 1-2 What is the relationship between the unconditional prima facie effect

PFE10 and the expectations E(Y |X=0) and E(Y |X=1) of the outcome variable Y in the

two treatment conditions?

⊲ Exercise 1-3 Verify that Table 1.1 (p. 4) is in fact obtained by collapsing the two corre-

sponding tables for males and females (see Table 1.2, p. 6).

⊲ Exercise 1-4 Which are the three kinds of prima facie effects treated in this chapter?

⊲ Exercise 1-5 What is the difference between statistical inference and causal inference?

⊲ Exercise 1-6 Why are the conditional expectation values E(Y |X=x ) in treatment con-

ditions x also probabilities for Y=1 in the first example treated in this chapter?

⊲ Exercise 1-7 Compute the conditional probability P(Y=1 |X=1, Z=0) from Table 1.2

(p. 6).

⊲ Exercise 1-8 Compute the probability P(Y=1|X=0) of success in the control condition.

⊲ Exercise 1-9 What are the unconditional prima facie effects of the treatments, i. e., the

prima facie effects E(Y |X=1)−E(Y |X=0) and E(Y |X=2) − E(Y |X=0) in the second ex-

ample of this chapter?

⊲ Exercise 1-10 What are the conditional prima facie effects of the treatments, i. e., the

prima facie effects E(Y |X=1, Z=z)−E(Y |X=0, Z=z ) and E(Y |X=2, Z=z )−E(Y |X=0, Z=z)

in the second example of this chapter?

⊲ Exercise 1-11 What are the averages of the conditional prima facie effects

E(Y |X=1, Z=z ) − E(Y |X=0, Z=z) and E(Y |X=2, Z=z) − E(Y |X=0, Z=z)

in the second example of this chapter?
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⊲ Exercise 1-12 Compute the coefficients of the equation for the conditional expectation

E(Y |X , M ) presented in Equation (1.3).

⊲ Exercise 1-13 Compute the coefficients of the equation for the conditional expectation

E(Y |X , M , Z ,W ) presented in Equation (1.4).

⊲ Exercise 1-14 Download table.1.4.10000.sav from www.causal-effects.de. This data set

has been generated from Table 1.4 (p. 10) for a sample of size N = 10.000.

(a) Estimate the cell means and the relative frequencies of observations in each of the

nine cells of the 3×3 table.

(b) Use each of the procedures offered by your statistical program package to analyze

the data including a test of the main effects of the treatment factor (most programs

offer Typ I, II and III sums of squares for such an analysis).

(c) Compare the results of these analyses to the parameters presented in Table 1.4

(p. 10).

⊲ Exercise 1-15 Download table.1.6.10000.sav from www.causal-effects.de. This data set

has been generated from Table 1.6 (p. 14) for a sample of size N = 10.000.

(a) Estimate the conditional expectation of Y given X and M .

(b) Estimate the conditional expectation of Y given X , M , Z and W .

(c) Compare the estimated regression coefficients to the parameters presented in Equa-

tions (1.3) and (1.4), respectively.

Solutions

⊲ Solution 1-1 We need the concept of a causal treatment effect, because Simpson’s para-

dox shows that differences between expectations are meaningless for the evaluation of the

effects of a treatment, unless we can show how the differences between expectations are

related to the causal effects. Without a definition of causal treatment effects, this would not

be possible. Estimating causal treatment effects is crucial for answering questions such as

‘Does the treatment help our patients with respect to the outcome variable considered?’

⊲ Solution 1-2 The unconditional prima facie effect PFE10 is defined as the difference

between the two expectations E(Y |X=1) and E(Y |X=0).

⊲ Solution 1-3 This can easily be verified by adding the probabilities for the observations

of the pairs (x, z) of X and Z over males and females. This yields .144+ .096 = .240, .004+

.228 = .232, .336+ .024 = .360 and .016+ .152 = .168.

⊲ Solution 1-4 The three kinds of prima facie effects treated in this chapter are: the un-

conditional prima facie effect, the conditional prima facie effect given the value z of a

covariate Z , and the average of the (Z=z)-conditional prima facie effects. The uncondi-

tional prima facie effect of treatment 1 compared to treatment 0 is the difference PFE10 :=

E(Y |X=1)−E(Y |X=0) between the expectations of an outcome variable Y in the two

treatment conditions. The (Z=z)-conditional prima facie effect is the difference PFE10 ; Z=z

:= E(Y |X=1, Z=z ) − E(Y |X=0, Z=z) between the (Z=z)-conditional expectation values

of the outcome variable Y in the two treatment conditions. The average prima facie effect

is the expectation of the conditional prima facie effects [see Eq. (1.2)].



1.5 Exercises 21

⊲ Solution 1-5 In statistical inference we estimate and test hypotheses about parameters

characterizing the distribution of a random variable from sample data. In causal inference

we interpret some of these parameters as causal effects.

⊲ Solution 1-6 E(Y |X=x ) = P(Y=1 |X=x ), because, in this example, Y is dichotomous

with values 0 and 1. In this case, E(Y |X=x ) :=
∑

y y ·P(Y=y |X=x ) [see Steyer & Nagel, in

press-a, Eq. (9.19)] yields E(Y |X=x) = 0 ·P(Y=0 |X=x )+1 ·P(Y=1 |X=x ) = P(Y=1 |X=x).

⊲ Solution 1-7 According to Table 1.2 (p. 6) ,

P(Y=1 |X=1, Z=0) =
P(X=1,Y=1, Z=0)

P(X=1, Z=0)
=

.016

.016+ .004
= .80.

⊲ Solution 1-8 First of all, note that the theorem of total probability, can also be applied

to conditional probabilities, in this exercise, the (X=0)-conditional probabilities. Hence,

according to this theorem,

P(Y=1 |X=0) = P(Y=1 |X=0, Z=0) ·P(Z=0 |X=0) + P(Y=1 |X=0, Z=1) ·P(Z=1 |X=0).

The probabilities P(Y=1 |X=0, Z=0) = .70 and P(Y=1 |X=0, Z=1) = .20 are computed

analogously to Exercise 1-7 and the other two probabilities occurring in this formula are

P(Z=0 |X=0) = .48/.60 and P(Z=1 |X=0) = .12/.60 (see Table 1.2, p. 6). Hence,

P(Y=1 |X=0) =
.70 · .48

.60
+

.20 · .12

.60
= .60.

⊲ Solution 1-9 The prima facie effects E(Y |X=1)−E(Y |X=0) and E(Y |X=2)−E(Y |X=0)

can be computed from Table 1.3 (p. 9). They are as follows:

PFE10 = E(Y |X=1)−E(Y |X=0) = 100.00−111.25 = −11.25

and

PFE20 = E(Y |X=2)−E(Y |X=0) = 114.25−111.25 = 3.00.

⊲ Solution 1-10 The conditional prima facie effects E(Y |X=1, Z=z)−E(Y |X=0, Z=z)

and E(Y |X=2, Z=z)−E(Y |X=0, Z=z) can be computed from Table 1.4 (p. 10). For low

neediness (Z=0), they are:

PFE10 ; Z=0 = E(Y |X=1, Z=0)−E(Y |X=0, Z=0) = 100−120 = −20

PFE20 ; Z=0 = E(Y |X=2, Z=0)−E(Y |X=0, Z=0) = 80−120 = −40.

For medium neediness (Z=1), they are:

PFE10 ; Z=1 = E(Y |X=1, Z=1)−E(Y |X=0, Z=1) = 100−110 = −10

PFE20 ; Z=1 = E(Y |X=2, Z=1)−E(Y |X=0, Z=1) = 90−110 = −20.

Finally, for high neediness (Z=2), the conditional prima facie effects are:

PFE10 ; Z=2 = E(Y |X=1, Z=2)−E(Y |X=0, Z=2) = 100−60 = 40

PFE20 ; Z=2 = E(Y |X=2, Z=2)−E(Y |X=0, Z=2) = 140−60 = 80.
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⊲ Solution 1-11 Using the results of the last exercise, the average of the (Z=z)-conditional

prima facie effects can be computed from the conditional effects as follows:

E(PFE10 ; Z ) = PFE10 ; Z=0 ·P(Z=0)+PFE10 ; Z=1 ·P(Z=1)+PFE10 ; Z=2 ·P(Z=2)

= −20 ·
1

4
−10 ·

1

2
+40 ·

1

4
= 0.

E(PFE20 ; Z ) = PFE20 ; Z=0 ·P(Z=0)+PFE20; Z=1 ·P(Z=1)+PFE20 ; Z=2 ·P(Z=2)

= −40 ·
1

4
−20 ·

1

2
+80 ·

1

4
= 0.

⊲ Solution 1-12 The two coefficients β1 ≈−3.7528 and β2 ≈ 1.1876 are obtained by

β = Σ−1
V V ΣV y =

(

β1

β2

)

≈

(

0.25 5.00

5.00 189

)−1 (

5.00

205.70

)

≈

(

8.4944 −0.2247

−0.2247 0.0112

)(

5.00

205.70

)

≈

(

−3.7528

1.1876

)

[see Steyer & Nagel, in press-a, Eq. (12.54)]. The appropriate statements in R are:

a=matrix(c(.25,5,5,189),byrow=T,nrow=2,ncol=2)
b=matrix(c(5,205.7),byrow=T,nrow=2,ncol=1)
round(solve(a,b),4)

In this equation, Σ−1
V V denotes the inverse of the covariance matrix of V := (X , M ) and

ΣV y the covariance vector of V = (X , M ) and Y . The intercept β0 ≈ 34.989 is obtained by

β0 ≈ E(Y )−β1 ·E(X )+β2 ·E(M )

≈ E(Y )+3.7528 ·E(X )−1.1876 ·E(M )

≈ 140+3.7528 ·0.50−1.1876 ·90 ≈ 34.9924

[see Steyer & Nagel, in press-a, Eq. (12.53)].

⊲ Solution 1-13 The coefficients γ1 to γ4 of

E(Y |X , M , Z ,W ) = γ0 +γ1 ·X +γ2 ·M +γ3 ·Z +γ4 ·W

are obtained by

γ = Σ−1
RR ΣR y =









γ1

γ2

γ3

γ4









=









0.25 5.00 0.00 0.00

5.00 189 80 68

0.00 80 100 85

0.00 68 85 100









−1 







5.00

205.70

116.50

124.00









=









20.0000 −0.8000 0.6400 0.0000

−0.8000 0.0400 −0.0320 0.0000

0.6400 −0.0320 0.0616 −0.0306

0.0000 0.0000 −0.0306 0.0360

















5.00

205.70

116.50

124.00









=









10.00

0.50

0.00

0.90









[see again Steyer & Nagel, in press-a, Eq. (12.54)]. In this equation, Σ−1
RR denotes the in-

verse of the covariance matrix of R := (X , M , Z ,W ) and ΣR y the covariance vector of
R = (X , M , Z ,W ) and Y . The appropriate statements in R are:
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a=matrix(c(.25,5,0,0,5,189,80,68,0,80,100,85,0,68,85,100),
byrow=T,nrow=4,ncol=4)

b=matrix(c(5,205.7,116.5,124),byrow=T,nrow=4,ncol=1)
round(solve(a,b),4).

The intercept γ0 = 0.00 is obtained by

γ0 = E(Y )− [γ1 ·E(X )+γ2 ·E(M )+γ3 ·E(Z )+γ4 ·E(W )]

= E(Y )−10 ·E(X )−0.50 ·E(M )−0.00 ·E(Z )− .90 ·E(W )

= 140−10 ·0.50−0.50 ·90−0.00 ·100− .90 ·100 = 0.00.

[see again Steyer & Nagel, in press-a, Eq. (12.53)].

⊲ Solution 1-14 No solution provided. Just compare your results to the parameters pre-

sented in Table 1.4 (p. 10).

⊲ Solution 1-15 No solution provided. Just compare your estimated parameters to the

true parameters presented in Equations (1.3) and (1.4).





Chapter 2

Some Typical Random Experiments

In chapter 1 we have shown that comparing conditional expectation values of

an outcome variable between treatment groups can be completely misleading

if used for the evaluation of treatment effects. We have also shown that regres-

sion coefficients and the conditional expectations they describe can be com-

pletely misleading even in the randomized experiment, if used to determine the

direct treatment effect with respect to an intermediate variable M . In this chap-

ter we will prepare the stage for the theory of causal effects, describing the kind

of empirical phenomena it refers to: single-unit trials of experiments or quasi-

experiments, but also single-unit trials of observational studies in which causal

effects can be investigated.

A single-unit trial is a specific random experiment. Note the distinction be-

tween a random experiment and a randomized experiment. Stochastic dependen-

cies between events and between random variables always refer to a random ex-

periment, but not necessarily to a randomized experiment in which a subject is

assigned to one of the treatment conditions by a randomization procedure. In

the simplest case of such a randomization we assign the subject to treatment

or control according to the outcome of flipping a coin. In contrast, a random

experiment is the concrete empirical phenomenon to which stochastic depen-

dencies between events and random variables described by conditional distribu-

tions, probabilities, correlations, and conditional expectations refer to.

The single-unit trial is not the sample dealt with in statistical models. In a sam-

ple, the single-unit trial is repeated many times in one way or another. This is

necessary when it comes to estimating parameters and testing hypotheses about

these parameters, some of which might be causal effects. The single-unit trial

does not allow treating problems of parameter estimation or hypothesis testing.

However, it is sufficient for defining causal effects and studying how to identify

them, i. e., studying under which conditions and how they can be computed from

empirically estimable parameters.

A single-unit trial is also what we refer to in substantive hypotheses and theo-

ries. Furthermore, single-unit trials are what is of interest in practical work. How

does the treatment of a patient affect the outcome of this patient if compared to

another possible treatment? What is the treatment effect for a male, and what is

its effect for a female? What is the direct treatment effect (e. g., of vaccination) on

the outcome variable (e. g., influenza) that is not transmitted through a specific

intermediate variable (e. g., a measure of certain antibodies)? Which variables ex-
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plain inter-individual differences in individual causal effects? All these questions

are raised using concepts referring to single-unit trials.

Overview

We start with the single-unit trial of simple experiments and then treat increas-

ingly more complex ones introducing additional design features. Specifically, we

will introduce the single-unit trials of experiments and quasi-experiments with

fallible covariates, a multifactorial design with more than one treatment, mul-

tilevel experiments and quasi-experiments, and experiments and quasi-experi-

ments with intermediate variables and latent outcome variables.

We also discuss different kinds of random variables that will play a crucial role

in the chapters to come. Among these random variables are the observational-

unit variable, other manifest and latent covariates, treatment variables, interme-

diate variables, as well as manifest and latent outcome variables. In this chapter,

we confine ourselves to an informal description of single-unit trials and the ran-

dom variables involved, preparing the stage for their mathematical representa-

tions in the following chapters.

2.1 Simple Experiments

As a first class of random experiments, we consider the single-unit trials of simple

experiments and quasi-experiments. Such single-unit trials are between-subjects

experiments and quasi-experiments in which no fallible covariates are assessed.

Such a single-unit trial consists of:

(a) sampling an observational unit u (e. g., a person) from a set (sometimes

called ‘population’) of units,

(b) assigning the unit or observing its assignment to one of several experimen-

tal conditions (represented by the value x of the treatment variable X ),

(c) recording the numerical value y of the outcome variable Y .

Figure 2.1 displays a tree representation of the set of possible outcomes of this

single-unit trial. Note that this is the kind of random experiment we (implic-

itly) referred to describing Simpson’s paradox in chapter 1. The random vari-

ables X (treatment), Y (success), and Z (sex), the conditional expectation val-

ues E (Y |X=x) and E (Y |X=x, Z=z), as well as the probabilities P (X=x), P (Z=z),

P (X=x, Z=z) all referred to such a single-unit trial. Of course, all these condi-

tional expectation values and probabilities are unknown in applications. Never-

theless, they are the parameters that stochastically determine the outcome of the

single-unit trial, just in the same way as the probability of tossing heads stochas-

tically determines the outcome of flipping a coin.

In order to illustrate this point, imagine flipping a deformed coin that has the

shape of a Chinese wok and suppose that in this case the probability of flipping

heads is .80 instead of .50. Although these probabilities do not deterministically
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Figure 2.1. A simple experiment or quasi-experiment

determine the outcomes of flipping the coins, they stochastically determine the

outcomes.

In fact, we may consider the single-unit trial of (a) sampling a coin u from

a set of coins, (b) forming (X=1) or not forming (X=0) a wok out of it, and (c)

observing whether (Y=1) or not (Y=0) we then toss heads. In this single-unit trial,

the difference .80− .50 = .30 would be the causal effect of the treatment variable

X on the outcome variable Y . Let us emphasize that the probabilities .80 and .50

and their difference .30 refer to this single-unit trial, although these probabilities

can only be estimated if we conduct many of these single-unit trials, i. e., if we

draw a sample. However, if these probabilities were known, we could dispense

with a sample and the data that would result from drawing it (see Exercise 2-1),

and still have a perfect prediction for the outcome of such a single-unit trial.

2.1.1 Sampling a Unit

The first part of this single-unit trial consists of sampling an observational unit.

In the social sciences, units often are persons, but they might be groups, school

classes, schools and even countries. Usually such units change over time. There-

fore, it should be emphasized that, in simple experiments and quasi-experiments,

we are talking about the units at the onset of treatment. Later we will see that we

have to distinguish between units at the onset of treatment and units at the time

of assessment of the outcome variable, which might be months or even years later.

In a single-unit trial of simple experiments and quasi-experiments, the units can



28 2 Some Typical Random Experiments

be represented by the observational-unit variable U , whose possible values u are

the units at the onset of treatment.

Note that the unit at the onset of treatment also comprises his or her expe-

riences a year and/or the day before treatment, as well as the psycho-bio-social

situation in which he or she is at the onset of treatment. Both, the experiences

and the situation, already happen before the onset of treatment. Therefore, they

are attributes of the observational units u, and this is true although they once

were just possible events that had some (unknown) probabilities to occur. Look-

ing at them at the time of the onset of treatment, they are no events any more

that may or may not occur. Instead, these prior experiences and situations are

then fixed attributes of the units. They can be treated in the same way as other

attributes such as sex and educational status.

2.1.2 Treatment Variable

In an experiment or quasi-experiment, there is always a treatment variable, which

we usually denote by X . The unit drawn is either assigned — e. g., by the experi-

menter or by some other person (such as a physician, a psychologist, or a social

worker) — to one of the possible treatments, or we observe self-selection to one

of the treatment conditions. In the simplest case there are at least two treatment

conditions, e. g., treatment and control. These treatment conditions are the possi-

ble values of the treatment variable X . For simplicity, we use the values 0,1, . . . , J

to represent J + 1 treatment conditions. Furthermore, unless stated otherwise,

we presume that treatment assignment and actual exposure to treatment will be

equivalent, i. e., unless stated otherwise, we assume that there is perfect compli-

ance.

Selection of a unit into one of the treatment conditions x may happen with

unknown probabilities, e. g., when there is self-selection or assignment by an

unknown physician. This is often the case in quasi-experiments. However, as-

signment can also be done with known probabilities that are equal for different

units (such as in the simple randomized experiment) or with known probabilities

that may be unequal for different units (such as in the conditionally random-

ized experiment). In this case, these treatment probabilities may also depend

on a covariate Z representing pre-treatment attributes of the units. Conditional

and unconditional randomized assignment, distinguish the true experiment from

the quasi-experiment, in which the assignment or selection probabilities are un-

known. (See section 7.5 for more details on randomization and conditional ran-

domization.)

2.1.3 Covariates

In simple experiments and quasi-experiments, the focus is usually on the treat-

ment effects on an outcome variable. Hence, if we are interested in the treatment

variable as a cause, then each attribute of the observational units is a covari-

ate. Examples are sex, race, educational status, and socio-economic status. Once
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the unit is drawn, its sex, race, educational status, and socio-economic status are

fixed as well. This means that there is no additional sampling process associated

with assessing these covariates. This is also the reason why they do not appear in

points (a) to (c) describing the single-unit trial (see p. 26).

Because covariates represent attributes of the unit at the onset of treatment

they can never be affected by the treatment. However, there can be (stochastic)

dependencies between the treatment variable and covariates. In Simpson’s para-

dox, for instance, there is a strong correlation between sex and the treatment vari-

able.

Multidimensional Covariates

Covariates may be uni- or multi-dimensional, qualitative (such as Z1 :=sex and

Z2 := educational background ) or quantitative (such as Z3 :=height and Z4 :=body

mass index) or, if it is a multivariate variable made up of several uni-dimensional

variables, it may consist of qualitative and quantitative covariates such as Z5 :=

(Z1, Z4).

Specific Covariates

Note that the U -conditional treatment probabilities P (X=x |U ) and the Z -conditional

treatment probabilities P (X=x |Z ) are covariates as well, provided that Z is a

covariate. (The mathematical background for this statement are chapters 2 and

10 of Steyer and Nagel (in press-a).) Furthermore, the assignment to treatment x

with values ‘yes’ and ‘no’ is also covariate, if assignment to treatment and exposure

to treatment (again with values ‘yes’ and ‘no’) are not identical. This distinction is

useful in experiments with non-compliance (see, e. g., Jo, 2002a, 2002b, 2002c; Jo

et al., 2008).

Unobserved Covariates

Even if we consider a multivariate covariate Z consisting of several univariate co-

variates, there are always unobserved variables that are prior or simultaneous

to treatment. Such variables are called unobserved covariates. Sometimes they

are also called hidden confounders (cf., e. g., Rosenbaum, 2002). Of course such

an unobserved covariate may bias the conditional expectation values of the out-

come variable just in the same way as an observed covariate. Whether or not the

conditional expectation values of the outcome variable in the treatment condi-

tions are unbiased such that their differences represent causal effects does not

only depend on the relationship between the measured variables such as X , Y ,

and the observed (possible multivariate) covariate, say Z , but also on the rela-

tionship of these variables to the unobserved covariates. In other words, covari-

ates exert their maleficent effects irrespective of whether or not we observe them.
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2.1.4 Outcome Variable

Of course, the outcome variable Y refers to a time at which the treatment might

have had its impact. Hence, treatment variables are always prior to the outcome

variable. In principle, we may also observe several outcome variables, e. g., in or-

der to study how effects of a treatment grow or decline over time or to study ef-

fects that are not limited to a single outcome variable. All random variables men-

tioned above refer to a concrete single-unit trial and they have a joint distribu-

tion. Each combination of unit, treatment condition, and score of the outcome

variable may be an observed result of such a single-unit trial. This implies that

the variables U , Z , X , and Y , as well as unobserved covariates, say W , have a

joint distribution. (See, e. g., section 5.3 of Steyer and Nagel (in press-a).) Once

we specified the random experiment to be studied, this joint distribution is fixed,

even though it might be known only in parts or even be unknown completely.

2.1.5 Causal Effects and Causal Dependencies

There is already a plenitude of different kinds of causal effects and causal depen-

dencies that can be considered in the single-unit trial of a simple experiment or

quasi-experiment. For simplicity, suppose the treatment has just two values, say

treatment and control. First, there is the average total effect of treatment (com-

pared to control) on the outcome variable Y . Second, there are the conditional

total treatment effects on Y , where we may condition on any function of the

observational-unit variable U . If, e. g., Z := sex with values m for male and f for

female, then we may consider the (Z =m)-conditional total treatment effect on

Y , i. e., the average total treatment effect for males, and the (Z = f )-conditional

total treatment effect on Y , i. e., the average total treatment effect for females.

Similarly, if Z := socio-economical status, we may consider the conditional total

treatment effects on Y for each status group, etc. Third, although difficult and

often impossible to estimate, we may also consider the individual total effect of

treatment compared to control on Y .

By definition, within a simple experiment and quasi-experiment we cannot

consider any direct treatment effects with respect to a specified intermedia-

te variable, i. e., the effects of the treatment on the outcome variable that are

not transmitted through a specified intermediate variable M . However, the total

treatment effects discussed above are, of course, transmitted through interme-

diate variables, irrespective of whether or not we observe (or are aware of) these

intermediate variables. (See section 2.5 for experiments and quasi-experiments

with observed intermediate variables).

Aside from the treatment effects discussed above we can also consider the

causal effects of a covariate. Among the causal effects of such a covariate are

its average total effect on the outcome variable Y , its conditional direct effects

on Y given the different values of the treatment variable — which now takes the

role of an intermediate variable — the average of these X -conditional direct ef-

fects and its indirect effect mediated by X . In a randomized experiment, e. g., the
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causal effects of all covariates on X will be zero. In other words, the zero prima

facie effects created by randomization will not be biased or spurious. In contrast,

in quasi-experiments, causal effects of some covariates on X might be different

from zero. In self-selection, e. g., neediness for a therapy might have strong aver-

age effects on the treatment variable. Furthermore, neediness often has strong

(X=x)-conditional direct effects and a strong average direct effect on the out-

come variable if it measures some aspects of health.

These effects of the covariates on the treatment variable and on the outcome

variable are discussed in the literature on structural equation modeling (see, e. g.,

Bentler, 1995; Bollen, 2002; Kaplan, 2000; S.-Y. Lee, 2007; Little, Card, Bovaird,

Preacher, & Crandall, 2007; MacCallum & Austin, 2000; Muthén & Muthén, 1998-

2007) and graphical modeling (see, e. g., Cox & Wermuth, 2004; Greenland, Pearl,

& Robins, 1999; Spirtes et al., 2000; Pearl, 1995, 1998, 2009), whereas they have

been criticized in the Rubin tradition (see, e. g., Holland, 1986). What should be

noted is that the causal effects of covariates have no ‘individual causal interpreta-

tion’ (see, e. g., Borsboom, Mellenbergh, & van Heerden, 2003). While the average

total effect of a treatment variable can be interpreted as the effect of the treatment

on an unknown, randomly drawn unit that can be exposed to treatment or con-

trol, the effects of a covariate such as neediness or sex on an outcome variable do

not have such an individual causal interpretation. The unit (at the onset of treat-

ment) has a certain degree of neediness and it has a sex, but it cannot be exposed

to a neediness condition or a sex. Nevertheless, neediness effects and sex effects

can be ‘spurious’ or ‘biased’, and we can define and aim at estimating ‘unbiased’

or ‘causal’ neediness and sex effects. As we discuss in more detail in chapter 5, we

can consider both, a treatment variable or an attribute of the units, as causes. The

conceptual framework provided in the chapters to come will cover both kinds of

causal effects which seem — and with respect to manipulability at the individual

level are — different from a content point of view.

2.2 Experiments With Fallible Covariates

Another class of random experiments are single-unit trials of experiments and

quasi-experiments in which we assess a fallible covariate. In this case, there is

at least one covariate that is not a (deterministic) attribute of the observational

units. The single-unit trial of such an experiment of quasi-experiment consists

of:

(a) sampling an observational unit u (e. g., a person) from a population of units,

(b) assessing the values z1, . . . , zk of the covariates Z1, . . . , Zk , k ≥ 1.

(c) assigning the unit or observing its selection to one of several experimental

conditions (represented by the value x of the treatment variable X ),

(d) recording the numerical value y of the outcome variable Y .

The crucial difference to a simple (quasi-) experiment is that there is variability

of the manifest covariate given the observational unit u (see Fig. 2.2). In this case,
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Figure 2.2. Experiment or quasi-experiment with a fallible covariate

we may distinguish between the latent covariate, say ξ, representing the attribute

to be assessed and its fallible measures, the manifest variables Z1, . . . , Zk actu-

ally observed. This distinction does not only open up the possibilities to study

the effects of the latent covariate on the treatment variable and on the outcome

variable, but also for investigating whether or not the dependency of the fallible

measures on the latent variable is causal.

Furthermore, this distinction also implies that the unit whose attributes are

measured at the time when the covariate is assessed is not identical any more with

the unit at the onset of treatment (see section 2.1). The covariate might be as-

sessed some months before the treatment is given — enough time and plenty

of possibilities for the unit to change in various ways, e. g., due to maturation,
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learning, critical life events, and other experiences that are not fixed at the time

of assessing the covariate. As a consequence, a variable, say W , representing

such intermediate events and experiences may also affect the outcome variable

Y over and above (a) the covariate Z , (b) the treatment variable X , and (c) the

observational-unit variable U , which now represents the observational units at

the time of the assessment of the covariate Z := (Z1, . . . , Zk ). In other words, the

outcome variable Y does not necessarily only depend on the units, covariates ,

and the treatment variable alone. Instead, it may also depend on an unobserved

covariate W lurking in between the assessment of the observed covariate Z and

the onset of treatment. This is one of the reasons why we need to define causal

effects in a more general way than in the Neyman-Rubin tradition (see chs. 4 and

5).

Note that assessing a fallible covariate does not only change the interpretation

of the observational-unit variable U , but it also changes the random experiment,

and with it, the empirical phenomenon we are considering. Assessing, prior to

treatment, a fallible covariate such as a pre-test of an ability, an attitude, or a

personality trait, may change the observational units and their attributes, as well

the effects of the treatment on a specified outcome variable, which usually is re-

lated to such a pre-test. This has already been discussed by Campbell and Stanley

(1963), who also recommended designs for studying the effects of pre-treatment

assessment.

Covariates

What are the covariates in such a single-unit trial? First of all, we have to choose

the cause to be considered. If it is the treatment variable X , then each attribute

of the unit at the time of the assessment of the observed covariates Z1, . . . , Zk is a

covariate pertaining to X as well. This does not only include variables such as sex,

race, and educational status, but also the latent covariate, say ξ, (which might be

multi-dimensional). Furthermore, aside from the manifest covariates Z1, . . . , Zk ,

each variable W representing an intermediate event or experience of the unit

(occurring in between the assessment of the observed covariates and the onset

of the treatment), as well as any attribute of the unit at the onset of treatment is a

covariate as well, irrespective of whether or not these covariates are observed.

Note that a latent covariate ξ may be considered a cause of its fallible mea-

sures Z1, . . . , Zk but also of the outcome variable Y . This is not in conflict with the

theory that the treatment variable X is a cause of Y as well. In this kind of single-

unit trial, we have several causes and several outcome variables that are affected

by these causes. Again it would be possible to consider the treatment variable X

to be causally dependent on the manifest or latent covariates. In other words, we

may also raise the question if the treatment probabilities P (X=1 |Z1, . . . , Zk ) or

P (X=1 |ξ) describe causal dependencies. This makes clear that the term ‘covari-

ate’ can only be defined with respect to a focused cause.
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2.3 Two-Factorial Experiments

As a third class of random experiments we consider two-factorial experiments.

The single-unit trial of such a two-factorial experiment or quasi-experiment con-

sists of:

(a) sampling an observational unit u (e. g., a person) from a population of units,

(b) assigning the unit or observing its assignment to one of several experimen-

tal conditions that are defined by the pair (x, z) of levels of two treatment

variables X and Z , respectively.

(c) recording the numerical value y of the outcome variable Y .

Sampling a Unit

Because we presume that no fallible covariates such as ‘severity of symptoms’,

‘motivation for treatment’, etc. are assessed before treatment, sampling an obser-

vational unit means that we are sampling a unit at the onset of treatment.

Treatment Variables

As a simple example, let us consider an experiment in which we study the effects

— including the joint effects — of two treatment factors, say individual therapy

represented by X (with values ‘yes’ and ‘no’) and group therapy represented by Z

(with values ‘yes’ and ‘no’).

In such a two-factorial experiment, we consider group therapy as a covariate

and individual therapy to be the treatment variable in order to ask for the con-

ditional and average total effects of individual therapy given group therapy. In

contrast, we may also consider individual therapy to be a covariate and group

therapy to be the focused treatment variable. Finally, we may also consider the

two-dimensional variable (X , Z ) as the treatment variable. Which option is cho-

sen depends on the causal effects we are interested in (see below).

Outcome Variable

Again, the outcome variable Y refers to a time at which the treatment might have

had the impact to be estimated. Hence, both treatment variables are prior to the

outcome variable considered. And again, we may also observe several outcome

variables, e. g., in order to study how effects of a treatment grow or decline over

time or to study effects that are not limited to a single outcome variable.

Causal Effects

There are several causal effects we might look at. If X and Z have only two values,

then we may be interested in the following effects on the outcome variable Y :
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(a1) the conditional total effect of ‘individual therapy’ as compared to ‘no indi-

vidual therapy’ given that the unit treated also receives ‘group therapy’,

(b1) the corresponding conditional total effect given that the unit does not re-

ceive ‘group therapy’, and

(c1) in the average of these conditional total effects of ‘individual therapy’ as

compared to ‘no individual therapy’, averaging over the two values of Z .

Vice versa, we might also be interested in the following effects on the outcome

variable Y :

(a2) the conditional total effect of ‘group therapy’ as compared to ‘no group ther-

apy’ given that the unit treated also receives ‘individual therapy’,

(b2) the corresponding conditional total effect given that the unit does not re-

ceive ‘individual therapy’, and

(c2) in the average of these conditional total effects of ‘group therapy’ as com-

pared to ‘no group therapy’, averaging over the two values of X .

Furthermore, there are other causal effects on Y we might study, namely

(a3) the total effect of receiving ‘individual therapy’ and ‘group therapy’ as com-

pared to receiving none of the two treatments.

(b3) the total effect of receiving ‘individual therapy’ and ‘group therapy’ as com-

pared to receiving ‘individual therapy’ only.

(c3) the total effect of receiving ‘individual therapy’ and ‘group therapy’ as com-

pared to receiving ‘group therapy’ only.

(d3) the total effect of receiving ‘individual therapy’ and ‘no group therapy’ as

compared to receiving ‘group therapy’ and ‘no individual therapy’.

All these effects may answer meaningful causal questions and in fact, there are

even more causal effects than those listed above even if we do not count the vari-

ous conditional total effects we might want to study if additional covariates such

as sex or educational status are considered.

Covariates

If we focus the effect of X (individual therapy), then we consider Z (group ther-

apy) as a covariate , whereas we treat X as a covariate if we study the effects of Z

(group therapy). In both cases, each attribute of the unit at the onset of treat-

ment (such as sex or educational status) could be considered as covariates as

well. Assessing these covariates does not appear in points (a) to (c) of the ran-

dom experiment, because these covariates are (deterministic) functions of the

observational-unit variable. Therefore, there is no additional sampling process

associated with their assessment.

This is also true for other covariates, e. g., variables characterizing the situation

in which the unit is at the onset of treatment, the number of hours slept last night,

or day time at which the unit receives its treatment. Even variables that charac-

terize early experiences in the childhood of the unit such as a broken home or
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mother’s child care behavior are covariates in this single-unit trial. They are there

and exert their effects even if they are not assessed.

Note, again that assessment of these covariates in a questionnaire filled in by

the person constitutes a new random experiment that may differ in important

ways from a random experiment in which the unit has no such task (see section

2.2). In psychology, an assessment often is a treatment of its own.

2.4 Multilevel Experiments

In multilevel experiments and quasi-experiments we also study the effect of a

treatment on an outcome variable. However, in such a design, the observational

units are nested within higher hierarchical units referred to as clusters. Exam-

ples include experiments, in which students are nested within classrooms, pa-

tients are nested within groups of treated patients, and inhabitants are nested in

neighborhoods. Multilevel designs can be classified as designs with treatment as-

signment at the unit-level or at the cluster-level. Furthermore, multilevel designs

differ with respect to the assignment of units to clusters. There are designs with

pre-existing clusters and there are designs with assignment of units to clusters.

All these designs involve different single-unit trials.

A single-unit trial with pre-existing clusters consists of:

(a) sampling a cluster c (e. g., a school class, a neighborhood or a hospital) from

a set of clusters,

(b) sampling an observational unit u (e. g., a person) from a set of units within

the cluster,

(c) assigning the unit or the cluster (depending on the design) or observing

their assignment to one of several experimental conditions (represented by

the value x of the treatment variable X ),

(d) recording the numerical value y of the outcome variable Y .

In contrast, a single-unit trial with assignment of units to clusters consists of:

(a) sampling an observational unit u (e. g., a person) from a population of units,

(b) assigning the unit or observing its assignment to one of several clusters

(represented by the value c of the cluster variable C ),

(c) assigning the unit or the cluster (depending on the design) or observing

their assignment to one of several experimental conditions (represented by

the value x of the treatment variable X ),

(d) recording the numerical value y of the outcome variable Y .

In the experiment with pre-existing clusters, each unit can only appear in one

cluster, whereas in the experiment with assignment of units to clusters, each unit

can appear in more than one cluster. Hence, in the latter designs the cluster vari-

able can bias the dependency of the outcome variable on the treatment variable

on the level of the observational unit. In this aspect this design resembles the mul-

tifactorial design described in section 2.3.
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Covariates

What are the covariates in multilevel designs if the treatment variable X is consid-

ered as the cause? The answer depends on the type of design considered: In de-

signs with treatment assignment at the unit-level, attributes of the observational

unit (such as sex, race or educational status) are covariates, but also attributes of

the cluster (such as school type, hospital ownership or cluster-specific expecta-

tions of covariates at the unit-level, such as school-level of socio-economic status

or school-level intelligence). In these designs, clusters may not only be considered

as covariates, but also as treatments, because some of the effects observed later

on may depend on the composition of the group to which a particular unit, say

Joe, is assigned. Receiving group therapy together with beautiful Ann in the same

group might make a great difference as compared to getting it together with awful

Jim. In designs in which clusters as a whole are assigned to treatment conditions,

only attributes of the cluster can influence the assignment. Hence, in data analy-

sis we would focus on controlling for the covariates on the cluster level (see, e. g.,

Nagengast, 2009 for more details).

2.5 Experiments With Intermediate Variables

Another class of random experiments are experiments with intermediate vari-

ables. The basic goal of such a experiment is to investigate if and to which degree

the effect of a cause X (such as a treatment variable) on an outcome variable Y

may be mediated or transmitted by another variable, say M . A first example is

mediation of the effect of vaccination (with values yes or no) on the severity of in-

fluenza symptoms by the amount of antibodies. Another example is mediation of

the effect of teachers encouragement (with values yes or no) on the achievement

by the amount of time spent on learning (see, e. g., Holland, 1988; Sobel, 2008, or

Rubin, 2004).

In the simplest case with a single manifest intermediate variable we consider

the following single-unit trial that consists of:

(a) sampling a person u out of a set of persons (the population of persons),

(b) assigning the unit or observing its selection to one of several experimental

conditions (represented by the value x of the treatment variable X ),

(c) assessing the value m of an intermediate variable M , and

(d) recording the numerical value y of the outcome variable Y .

In this single-unit trial, the values u of the observational-unit variable U again

represent the observational unit at the onset of treatment, while the intermediate

variable M represents some attribute of the unit at the time point at which the

intermediate variable is assessed. This time point is in between the onset of treat-

ment and the assessment of the outcome variable Y (see Fig. 2.3). If M is fallible,

then we distinguish between M and the latent variable to be measured by M .

In this case we would need an additional layer in the tree representation for the
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Figure 2.3. Experiment or quasi-experiment with an intermediate variable
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latent intermediate variable. Furthermore, instead of a single manifest interme-

diate variable, we would need several manifest intermediate variables measuring

the latent intermediate variable.

Covariates

What are the covariates in such a single-unit trial? Again, the answer depends on

the choice of the cause. If it is the treatment variable X , then each attribute of

the unit at the onset of treatment is a covariate pertaining to X . Examples are

sex, race, and educational status. Note that the set of covariates of X is the same

irrespective of the choice of the outcome variable. In this example we may choose

the original outcome variable Y ; however, we may also choose the intermediate

variable M as an outcome variable in order to study the effects of X on M .

Focusing M as a cause, brings additional covariates into play, namely all those

variables that are in between treatment and the assessment of the intermediate

variable. This could be critical life events, additional drugs taken after treatment

and before the assessment of the intermediate variable, or an additional treat-

ment to which the unit is exposed and which may or may not be manipulated by

the experimenter.

2.6 Experiments With Latent Outcome Variables

We may also consider single-unit trials of experiments with a latent outcome vari-

able. The basic goal of such experiments is to investigate the effect of the treat-

ment variable X on a latent outcome variable, say η. This is of substantive inter-

est, e. g., where a quantitative outcome variable can only be measured by qual-

itative observations such as solving or not solving certain items indicating the

(latent) ability. However, it can also be of interest if the manifest measures are

linearly related to the latent variable such as in models of classical test theory

(see, e. g., Steyer, 2001) or in models of latent state-trait theory (see, e. g., Steyer,

Mayer, Geiser, & Cole, 2015). If, e. g., there are three manifest variables Y1, Y2, and

Y3 measuring a single latent variable η, we may ask if there is just one single effect

of the treatment on the latent outcome variable η — which transmits these effects

to the manifest variables Y1, Y2, and Y3 — instead of three separate effects of X on

each variable Yi . Hence, the latent variable may also be considered to be a me-

diator variable. Showing that all effects of X on the variables Yi are indirect, i. e.,

mediated by η is one of the research efforts that aims at establishing construct

validity of the latent variable η.

In the simplest case with a single latent variable, we consider the following

single-unit trial:

(a) Sampling a person u out of a set of persons (the population of persons),

(b) assigning the unit or observing its selection to one of several experimental

conditions (represented by the value x of the treatment variable X ),
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(d) recording the numerical values y1, . . . , ym of the manifest outcome variables

Y1, . . . ,Ym .

In this single-unit trial, the values u of the observational-unit variable U again

represent the observational unit at the onset of treatment, while the latent out-

come variable η represents some attribute of the unit at the time point at which

the outcome of the treatment is assessed. Clearly, this time point is after treat-

ment and prior to the observation of the manifest outcome variables Yi , at least

as long as we preclude change in the latent variable during the process of assess-

ing the manifest outcome variables. If this cannot be precluded, we would have

to consider the time sequence in assessing the manifest outcome variables (e. g.,

of the items to be solved) as well.

Covariates

What are the covariates in such a single-unit trial? Again, the answer depends on

the cause considered. If it is the treatment variable X , then each attribute of the

unit at the onset of treatment is a covariate (with respect to X ). Obviously, this

again includes variables such as sex, race, and educational status. Note that in

this kind of experiments, the set of covariates of X is the same irrespective of the

choice of the outcome variable. Remember, we may not only consider the latent

outcome variable η but also the manifest outcome variables Yi , e. g., in order to

study whether or not the effects of X on these manifest outcome variables are

perfectly transmitted (or mediated) through the latent variable η.

Choosing the latent outcome variable η as a cause of the manifest outcomes

variables Yi brings additional covariates into play, for instance, all those variables

that are in between treatment and the assessment of η. If, e. g., we consider an

experiment studying the effects of different teaching methods, these additional

covariates are critical life events (such as father or mother leaving the family),

or additional lessons taken after treatment and before outcome assessment, for

instance.

2.7 Summary and Conclusions

In this chapter we described a number of random experiments in informal terms.

The purpose was to get a first idea which kind of empirical phenomena causal

theories and hypotheses refer to. We focused on single-unit trials, which are the

kinds of empirical phenomena we are interested in, both in theory and practice.

We emphasized that a single-unit trial is a random experiment and discussed

several kinds of random variables playing a crucial role in the theory of causal

effects. We also mentioned that there is a certain time order among these random

variables, e. g., saying that the covariates are ‘prior’ or ‘simultaneous’ to the treat-

ment variable, which itself is ‘prior’ to the outcome variable. Furthermore, for

each single-unit trial and each cause in such a single-unit trial, we discussed the
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Box 2.1 Glossary of New Concepts

Random experiment The kind of empirical phenomenon that events, random

variables, and their dependencies refer to.

Single-unit trial A particular kind of random experiment that consists of

sampling a unit from a set of observational units and ob-

serving the values of one or more random variables re-

lated to this unit.

Cause A random variable. Its effect on an outcome variable is

considered.

Outcome variable A random variable. Its dependency on a cause is consid-

ered.

Covariate of a cause A random variable that can never be affected by the

cause. It is prior or simultaneous to the cause. It might

be correlated with the cause and the outcome variable.

Fallible covariate A covariate that is assessed with measurement error.

Latent covariate A covariate that is not directly observed. Instead it is de-

fined by a set of manifest variables and a measurement

model describing the dependencies of the manifest vari-

ables on the latent covariate.

Intermediate Variable A variable that might mediate (transmit) the effect of the

cause on the outcome variable. The cause is always prior

to an intermediate variable and an intermediate variable

is always prior to the outcome variable. An intermedia-

te variable is not necessarily affected by the cause and it

does not necessarily have an effect on the outcome vari-

able.

Mediator An intermediate variable on which X has a causal effect

and which itself has a causal effect on the outcome vari-

able Y .

Note that all these terms are still of an informal nature. Their mathematical treatment

starts in chapter 3.

covariates involved. We emphasized that each cause considered in such a single-

unit trial has its own set of covariates.

Other Single-Unit Trials

The single-unit trials discussed in this chapter are just a small selection of single-

unit trials in which causal effects and causality of stochastic dependencies are of

interest. We might also consider single-unit trials with latent covariates and la-
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tent outcome variables and manifest and/or latent intermediate variables, but

also single-unit trials with multiple mediation. Furthermore, we could also con-

sider single-unit trials of growth curve models (see, e. g., Biesanz, Deeb-Sossa,

Aubrecht, Bollen, & Curran, 2004; Bollen & Curran, 2006; Meredith & Tisak, 1990;

Singer & Willett, 2003; Tisak & Tisak, 2000), latent change models (see, e. g.,

McArdle, 2001; Steyer, Eid, & Schwenkmezger, 1997; Steyer, 2005), or cross-lagged

panel models (see, e. g., Kenny, 1975; Rogosa, 1980b; Watkins, Lei, & Canivez,

2007; Wolf, Chandler, & Spies, 1981). Causality is also an issue in uni- and mul-

tivariate time-series analysis as well as in stochastic processes with continuous

time. However, in this book our examples will usually deal with experiments and

quasi-experiments, including latent covariates and outcome variables as well as

intermediate variables.

Outlook

Steyer and Nagel (in press-a) study how random experiments and the dependen-

cies between events and random variables can be represented in terms of prob-

ability theory. In chapter 3 we extend the mathematical structure so that we can

also meaningfully talk about time order between events and random variables

and distinguish between covariates and intermediate variables. This will provide

the mathematical framework in which causal effects can be meaningfully dis-

cussed.

2.8 Exercises

⊲ Exercise 2-1 Imagine that the probabilities of a crash for a flight with Airline A is ten

times smaller than with Airline B. Which airline would you choose?

⊲ Exercise 2-2 Why does the theory of causal effects refer to single-unit trials?

⊲ Exercise 2-3 Why is it important to know which random experiment we are talking

about?

⊲ Exercise 2-4 Which type of random experiment did we refer to in Simpson’s paradox

and in the nonorthogonal ANOVA example described in chapter 1?

⊲ Exercise 2-5 Why is it important to emphasize that, in simple experiments and quasi-

experiments (see section 2.1), the observational-unit variable U represents the observa-

tional units at the onset of treatment ?

⊲ Exercise 2-6 What is the basic idea of a covariate pertaining to a cause?

⊲ Exercise 2-7 Which kinds of causal effects can be considered in the simple experiment

or quasi-experiment in which no fallible covariate and no intermediate variable is as-

sessed?

⊲ Exercise 2-8 Which are the covariates pertaining to an intermediate variable if it is con-

sidered a cause of the outcome variable?
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Solutions

⊲ Solution 2-1 Of course, B. Note that we apply these probabilities to the random ex-

periment of flying once with A or B, even if these probabilities have been estimated in a

sample.

⊲ Solution 2-2 Within such a single-unit trial, the various concepts of causal effects can

be defined and we can study how to identify these causal effects from the parameters de-

scribing the joint distribution of the random variables considered. In such a single-unit

trial, there usually is a clear time order which helps to disentangle the possible causal re-

lationships between the random variables considered.

⊲ Solution 2-3 Different random experiments are different empirical phenomena. Al-

though the names of the variables in different random experiments might be the same,

the variables themselves are different entities, implying that the dependencies and effects

between these variables might be different in different random experiments.

⊲ Solution 2-4 The type of random experiment we refer to in these examples is the single-

unit trial of simple experiments and quasi-experiments described in section 2.1.

⊲ Solution 2-5 In the social sciences, units are often persons, and persons can change

over time. If, in a simple experiment or quasi-experiment, a value u of U represents the

observational unit sampled at the onset of treatment, each covariate will be a function of

U . If, in contrast, U would represent the observational unit at the assessment of a fallible

covariate (see section 2.2), which is some time prior to the onset of treatment, there can be

other covariates in between assessment of the fallible covariate and the onset of treatment.

We have to consider these additional covariates both in the definition of causal effects and

in data analysis.

⊲ Solution 2-6 A covariate pertaining to a cause is a variable that is prior or simultaneous

to the cause.

⊲ Solution 2-7 If the treatment has just two values, say treatment and control, there are

different kinds of causal effects of the treatment variable on the outcome variable Y , such

as the average total treatment effect, the conditional total treatment effects given a value

of a covariate Z , and the individual total effect of X on Y given an observational unit u.

Aside from these treatment effects, we may also consider the causal effects of a covariate Z

on the treatment variable X , but also on the outcome variable Y . Among the causal effects

of such a covariate are its conditional direct effects on Y given the different values of the

treatment variable, the average of these X -conditional direct effects, and its indirect effect

mediated by X .

⊲ Solution 2-8 Covariates pertaining to such an intermediate variable M are all variables

representing attributes of the observational units at the onset of treatment, all variables

that are simultaneous to treatment, including X itself, all other variables that are in be-

tween treatment and the intermediate variable.
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Chapter 3

Causality Space

In chapter 2 we described some random experiments and discussed several kinds

of random variables playing a crucial role in the theory of causal effects. In this

discussion we referred to the time order among these random variables, e. g., say-

ing that covariates are ‘prior’ or ‘simultaneous’ to the cause, which itself is prior

to the outcome variable. We also said that intermediate variables are ‘in between’

cause and outcome variables. Furthermore, for each kind of those random exper-

iments, we also discussed the set of covariates pertaining to a cause, again draw-

ing on the time order between the variables involved. Finally, we emphasized that

even within the same random experiment different causes requires different sets

of covariates.

A random experiment is represented by a probability space. Referring to such

a probability space we can consider events, random variables, their distributions,

conditional expectations, and conditional distributions, which can be used to

describe various kinds of stochastic dependencies between random variables.

In this chapter we presume that the reader is familiar with these fundamen-

tal concepts of probability theory, including the following concepts: σ-algebra ,

σ-algebra generated by a set system, σ-algebra generated by a mapping, product

of sets, product σ-algebra, measurable space, measure space, measurability of a

mapping with respect to a σ-algebra, and measurability of a mapping with re-

spect to another mapping. These concepts are introduced in Steyer and Nagel

(in press-a), but also in Bauer (1996), Feller (1968, 1971), Georgii (2008), Klenke

(2013), Loève (1977, 1978), and many other textbooks on measure and probability

theory.

Note that neither events nor random variables refer to a process with respect

to which we can say that a cause is prior to the outcome variable and not prior

to a covariate. Furthermore, the distinction between covariates and intermedia-

te variables does not yet have a mathematical foundation in the terms of mea-

sure and probability theory mentioned above. Therefore, in this chapter, we in-

troduce additional mathematical concepts allowing to introduce the priority and

simultaneity relations between events, between sets of events, and between ran-

dom variables. The additional mathematical structure also allows us to introduce

a mathematical definition of covariates and intermediate variables in the next

chapter.

While the concepts introduced in this chapter distinguish a potential causal

dependence from an ordinary stochastic dependence, the causality conditions
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treated in chapters 6 to 9 make the distinction between a potential and an ac-

tual causal dependence. With these causality conditions we postulate certain re-

lationships between the covariates on one hand, and the focused cause or the

outcome variable on the other hand. Note that the mathematical concepts intro-

duced in this chapter are not restricted to experiments and quasi-experiments.

Instead, they are of fundamental importance whenever causal effects and causal

dependencies are considered, even in processes with continuous time.

Overview

We start with the concept of a filtration, which we use for defining the priority

and simultaneity relations between sets (events), sets of events (sets of events),

and measurable mappings (random variables). We also introduce the concept of

a causality space, which consists of all structural components that are necessary

for the definition of causal effects and for raising the question if a stochastic de-

pendence of a random variable on another one has a causal interpretation.

3.1 Filtration

The fundamental conceptual tool for introducing the priority relation mentioned

above is the concept of a filtration, which is well-known in the theory of stochastic

processes (see, e. g., Bauer, 1996; Klenke, 2013). In the following definition we re-

fer to a measurable space (Ω,A ), which is simply a pair consisting of a nonempty

set Ω and a σ-algebra A on Ω (see, e.g., Def. 1.1 of Steyer & Nagel, in press-a, in

the sequel abbreviated SN).

Definition 3.1 (Filtration)

Let (Ω,A ) be a measurable space and T ⊂R . A family (Ft , t ∈T ) of σ-alge-

bras Ft ⊂ A is called a filtration in A , if Fs ⊂ Ft , for all s, t ∈T with s ≤ t .

Remark 3.2 (Finite Index Set) Oftentimes it will be sufficient to consider a filtra-

tion with a finite index set T = {1,2, . . . ,n }, n ∈ N. If necessary, we may as well

consider a subset T ⊂R . The important point is that the index set T is endowed

with the relations =, < and ≤. In applications, the elements of the set T often-

times represent time points. ⊳

Example 3.3 (Joe and Ann With Self-Selection) We illustrate the concept of a fil-

tration by the numerical example presented in Table 3.1. This table refers to

the following random experiment: First, we sample a unit u from the set ΩU :=

{Joe,Ann }. Second, each unit receives (yes) or does not receive a treatment (no),

and third it is observed whether (+) or not (−) a success criterion is reached some

appropriate time after treatment. Defining ΩX := {yes,no } and ΩY := {+,−}, the set

of possible outcomes ω of this random experiment is



3.1 Filtration 49

Table 3.1. Joe and Ann With Self-Selection to Treatment Conditions

Outcomes ω Observables
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(Joe, no, −) .144 Joe 0 0

(Joe, no, +) .336 Joe 0 1

(Joe, yes, −) .004 Joe 1 0

(Joe, yes, +) .016 Joe 1 1

(Ann, no, −) .096 Ann 0 0

(Ann, no, +) .024 Ann 0 1

(Ann, yes, −) .228 Ann 1 0

(Ann, yes, +) .152 Ann 1 1

Ω := ΩU ×ΩX ×ΩY =
{

(Joe,no,−), (Joe,no,+) , . . . , (Ann,yes,+)
}

. (3.1)

In this example, the set Ω has eight elements, the triples (Joe,no,−), (Joe,no,+),

. . ., (Ann, yes,+) (see the first column of Table 3.1 for a complete list of these el-

ements). Furthermore, we define A := P (Ω). Finally, because each nonempty

element A ∈ A is a union of the singletons {ω}, ω ∈Ω, and because a measure is

additive, the probability measure P : A → [0,1] is uniquely defined by the second

column of Table 3.1 [see Box 4.1 (x) of SN]. Hence, the probability space (Ω,A,P )

is completely specified.

Remember, by definition, a measurable mapping X : (Ω,A )→(Ω′
X ,A ′

X ) is also

called a random variable on the probability space (Ω,A,P ) with values in (Ω′
X ,A ′

X )

if P is a probability measure on A (see Def. 5.1 of SN). In this example, we also

consider three random variables: the observational-unit variable U : (Ω,A ) →

[ΩU,P (ΩU)], the treatment variable X : (Ω,A )→(Ω′
X ,A ′

X ), and the outcome vari-

able Y : (Ω,A )→(Ω′
Y ,A ′

Y ), where Ω′
X = {0,1}, A

′
X =P (Ω′

X ) =
{

Ω ′,Ø,{0}, {1}
}

, Ω′
Y =

{0,1}, and P (Ω′
Y ) =

{

Ω ′,Ø,{0}, {1}
}

. Table 3.1 shows how each of these random

variables assigns one of its values to each of the eight elements ω ∈Ω.

In this example, we consider a filtration (Ft , t ∈T ) with three σ-algebras (see

Fig. 3.1). The first one is

F1 := U −1
[

P (ΩU)
]

,

i. e., F1 is the σ-algebra generated by the observational-unit variable U and the

power set P (ΩU) of the set ΩU := {Joe,Ann } (see Def. 2.26 of SN). Hence, the

σ-algebra F1 has only four elements, the event that Joe is drawn,

U −1({Joe }) = { (Joe, no, −), (Joe, no, +), (Joe, yes, −), (Joe, yes, +) },
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F1

F2

F3

Figure 3.1. Venn-diagram of a filtration with T = {1,2,3}

the event that Ann is drawn,

U −1({Ann}) = { (Ann, no, −), (Ann, no, +), (Ann, yes, −), (Ann, yes, +) },

the sure event Ω, and the impossible event Ø.

Furthermore, we define

F2 := σ
[

F1 ∪X −1(A ′
X)

]

to be the σ-algebra generated by the union of the σ-algebras F1 and X −1(A ′
X),

where X −1(A ′
X) represents the σ-algebra that is generated by X and A

′
X =P (Ω′

X )

(see Def. 1.13 of SN). The σ-algebra F2 has 24 = 16 elements. For example, it

includes the event that Joe is drawn, U −1({Joe }), the event that Ann is drawn,

U −1({Ann }), the event that the person drawn is treated, X −1({1}), the event that

the person drawn is not treated, X −1({0}), the event that Joe is drawn and treated,

(U , X )−1({ (Joe ,1) }), and the event that Ann is drawn and not treated, (U , X )−1({ (Ann,0) }).

Finally, the σ-algebra F3 is the power set of Ω. It has 28 = 256 elements and

it contains all possible events that might occur in this random experiment, in-

cluding the elementary events such as Joe is drawn, treated and successful. Most

important, the three σ-algebras Ft are constructed such that

F1 ⊂F2 ⊂F3

holds for the family (Ft , t ∈T ), where T = {1,2,3} (see Fig. 3.1 and again Def. 1.13

of SN). ⊳

Example 3.4 (Simple Experiments) How can we construct the filtration (Ft , t ∈T )

in general for the single-unit trial of a simple experiment or quasi-experiment in

which no fallible covariates are observed (see section 2.1)?

In this kind of random experiment the probability space (Ω,A,P ) has the

same structure as described in Example 3.3, except for the sets ΩX, ΩY, Ω′
X , and
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Ω′
Y , which may contain more than just two elements. Of course, the associated

σ-algebras are different as well. Furthermore, the random variables U , X , and Y

are also defined in the same way as in the example. While ΩX and Ω′
X are finite

or countable, the sets ΩY and Ω′
Y may be subsets of Rn, n ∈N. In this case, the

σ-algebra A
′

Y will be the Borel σ-algebra Bn (see, e. g., section 1.2.2 of SN).

Note that the σ-algebra A on Ω is not necessarily the power set of Ω. If, e. g.,

we consider a real-valued outcome variable Y : (Ω,A ) → (R ,B), then A can be

defined to be the product σ-algebra P (ΩU)⊗P (ΩX)⊗Y −1(B) (see, e. g., Def. 1.31

of SN), where B denotes the Borel σ-algebra onR . In contrast to Example 3.3, in

empirical applications, the probability measure P on (Ω,A ) is unknown or only

partly known.

In a simple experiment, the random variable U : (Ω,A ) → [ΩU,P (ΩU)] indi-

cates with its value which observational unit u is drawn. Hence, we can define

F1 := U −1
[

P (ΩU)
]

, (3.2)

i. e., F1 is the σ-algebra generated by the observational-unit variable U [and the

power set P (ΩU) of the set ΩU of all units considered]. The number of elements

of F1 is 2n , where n denotes the number of elements of the set ΩU. In Example

3.3 we considered two units. Hence, in this example, P (ΩU) has 22 = 4 elements.

Random variables that are mappings of U such as sex, race, socio-economic

status, educational status, etc. are measurable with respect to F1. This means that

if there is a measurable mapping f : [ΩU,P (ΩU)] → (Ω′
Z ,A ′

Z ) such that Z = f (U ),

then Z −1(A ′
Z ) ⊂ F1 (see, e. g., Lemma 2.52 of SN). Hence, in simple experiments

and quasi-experiments, all covariates are measurable with respect to U .

Using the concept of a σ-algebra generated by a set of events (see 1.13 of SN),

we define

F2 := σ
[

F1 ∪X −1(A ′
X)

]

, (3.3)

where X −1(A ′
X) represents the σ-algebra generated by the treatment variable

X : (Ω,A )→(Ω′
X ,A ′

X ). In this most simple example, it is assumed that X is finite or

countable and that there are no random variables on (Ω,A,P ) that vary simulta-

neously to X . In particular this means that there are no other treatment variables

aside from X .

Finally, we define

F3 := σ
[

F2∪Y −1(A ′
Y )

]

, (3.4)

where Y −1(A ′
Y ) is the σ-algebra generated by Y : (Ω,A )→(Ω′

Y ,A ′
Y ), the outcome

variable. Note that Y is not necessarily numerical.

In such a simple experiment, the filtration (Ft , t ∈T ), T = {1,2,3}, (see Fig. 3.1)

allows to define a covariate of X to be a random variable on the probability space

(Ω,A,P ) that is measurable with respect to F1 (see section 4.1 for a general defi-

nition of a covariate). In a randomized experiment, F1 and X (and therefore also

U and X ) are stochastically independent. In applications, this is often secured by

a assigning the unit to a treatment condition depending only on the outcome of

a coin flip. ⊳
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Example 3.5 (Experiments With Fallible Covariates) Which is the filtration in

the single-unit trial of experiments and quasi-experiments if we do observe at

least one fallible covariate (see section 2.2)? Again, we start with the set of possible

outcomes ω of this random experiment. Now we assume that Ω can be written

Ω = ΩU ×ΩZ ×ΩX ×ΩY. (3.5)

Compared to Equation (3.1), Ω now involves an additional set ΩZ. This ran-

dom experiment consists of (a) drawing a unit from ΩU, (b) observing an el-

ement ωZ of ΩZ based on which the covariate Z assigns a value z ∈ Ω′
Z to

ω ∈ Ω, (c) assigning the unit or observing its selection to one of the experimen-

tal conditions (represented by the value x of the treatment variable X ), and (d)

recording the numerical value y of the outcome variable Y . Correspondingly, the

σ-algebra A on Ω is now defined to be a fourfold product σ-algebra, involving

appropriate σ-algebras on each of the four sets involved in the Cartesian prod-

uct ΩU×ΩZ ×ΩX ×ΩY. Furthermore, now we have an additional random variable

Z : (Ω,A )→(Ω′
Z ,A ′

Z ), the fallible covariate. Note that this covariate may also be

multivariate consisting of several univariate covariates.

Specifying the filtration (Ft , t ∈T ), the first of these σ-algebras can again be

defined by

F1 := U −1
[

P (ΩU)
]

, (3.6)

i. e., F1 is the σ-algebra generated by the observational-unit variable U . Note,

however, that F1 is now a σ-algebra on the set ΩU ×ΩZ ×ΩX ×ΩY.

Second, we define

F2 := σ
[

F1 ∪Z −1(A ′
Z )

]

, (3.7)

where Z is the (possibly multivariate) covariate that is assessed with measure-

ment error. Hence, Z may consist of fallible measures of attributes of the units

such as self-rated motivation for therapy as well as personality or ability test-

score variables. Given a particular unit u, the values of all these variables still

have a positive variance, due to measurement error. Because Z is fallible, there

is no mapping f : [ΩU,P (ΩU)] → (Ω′
Z ,A ′

Z ) such that Z = f (U ). In other words,

fallible covariates have (U=u)-conditional distributions with positive variances.

This includes the fallible measures of a latent covariate, say ξ, which itself is, by

definition, a mapping of U (see, e. g., Steyer et al., 2015). Hence, the latent vari-

able ξ is measurable with respect to F1. Furthermore, the σ-algebra F2 is defined

such that all random variables that are prior to treatment are measurable with

respect to F2. This includes mappings of U , the fallible measures of attributes of

the units, but also all measurable mappings of these two classes of variables.

Third, we define

F3 := σ
[

F2∪X −1(A ′
X)

]

, (3.8)

where X −1(A ′
X) is the σ-algebra generated by the treatment variable X . All vari-

ables that are measurable with respect to F2 are also measurable with respect to

F3. Furthermore, the product of X and Z , if both are numerical, and the product

of an indicator (with values 0 and 1) of sex — a function of U — and an indicator

of a treatment condition are also measurable with respect to F3, for instance.
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F1

F2

F3

F4

Figure 3.2. Venn-diagram of a filtration with T = {1,2,3,4}

Fourth and finally, we define

F4 := σ
[

F3 ∪Y −1(A ′
Y )

]

, (3.9)

where Y −1(A ′
Y ) is theσ-algebra generated by the outcome variable Y : (Ω,A )→(Ω′

Y ,A ′
Y ),

which might be a multivariate random variable that can also be qualitative. Note

that (Ft , t ∈T ), t = 1, . . . ,4, is defined such that

F1 ⊂F2 ⊂F3 ⊂F4.

This is illustrated by Figure 3.2.

This filtration (Ft , t ∈T ) with T = {1, . . . ,4} is sufficient for many discussions

of causal effects in experiments and quasi-experiments. For other purposes, we

may consider more than these four σ-algebras, e. g., if models with intermediate

variables are considered, or if we consider also a fallible outcome variable (see

sections of 2.5 and 2.6.) Note that the concept of a filtration even applies if T is an

uncountable subset of R .

⊳

3.2 Priority Relation

Utilizing the concept of a filtration, now we introduce the priority relation of sets

(events), of set systems (sets of subsets, sets of events), and of measurable map-

pings (random variables). We define the term “Z is prior to Y ” in such a way

that also difference variables Y −Z , e. g., differences between post- and pre-tests
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(change-score variables), can be ordered with respect to time even though pre-

and post-tests refer to different time points. The analysis of such difference vari-

ables is sometimes used in the analysis of causal effects (see section 12.1 for the

conditions under which such an analysis yields unbiased causal effects).

Definition 3.6 (Priority Relation of Set Systems)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A .

Then we say that C is prior to D in (Ft , t ∈T ), if :

(a) there is an s ∈T with C ⊂Fs , D 6⊂Fs , and

(b) there is a t ∈T, s < t , with D ⊂Ft .

Remark 3.7 (Priority Relation of Sets) Let (Ω,A ) be a measurable space, (Ft , t ∈T )

a filtration in A, and A1, A2 ∈ A . Then we say that A1 is prior to A2 in (Ft , t ∈T ),

if (a) and (b) of Definition 3.6 hold for C = {A1} and D = {A2}. Note that {A } ⊂Ft

if and only if A ∈Ft . This implies: A1 is prior to A2 in (Ft , t ∈T ) if and only if

(a) there is an s ∈T with A1 ∈Fs , A2 6∈Fs , and

(b) there is a t ∈T, t > s, with A2 ∈Ft .
⊳

Remark 3.8 (Priority Relation of Measurable Mappings) Let (Ω,A ) be a mea-

surable space, (Ft , t ∈T ) a filtration in A, and Xi : (Ω,A ) → (Ω ′
i ,A ′

i ), i = 1,2,

measurable mappings. Then we say that X1 is prior to X2 in (Ft , t ∈T ), if (a) and

(b) of Definition 3.6 hold with C =σ(X1) and D =σ(X2). ⊳

Remark 3.9 (Priority Relation of σ-Algebras) Let (Ω,A ) be a measurable space,

(Ft , t ∈T ) a filtration in A, and C , D ⊂ A . Because Fs and Ft , s, t ∈ T , are

σ-algebras, we can conclude: C is prior to D in (Ft , t ∈T ) if and only if

(a) there is an s ∈T with σ(C ) ⊂Fs , σ(D ) 6⊂Fs , and

(b) there is a t ∈T, s < t , with σ(D ) ⊂Ft .
⊳

Remark 3.10 ( Comparing Sets to σ-Algebras ) Note that σ({A }) = {Ω,Ø, A, Ac },

where Ac denotes the complement of A. Therefore, according to Definition 3.6

and Remark 3.9, priority of sets, of set systems, and of measurable mappings al-

ways refer to σ-algebras. As mentioned before, this allows us to compare sets to

measurable mappings, measurable mappings to σ-algebras, etc. Hence, we say

that the set A is prior in (Ft , t ∈T ) to the measurable mapping X , if the σ-algebra

generated by {A } is prior in (Ft , t ∈T ) to the σ-algebra generated by X , etc. ⊳

Example 3.11 (Joe and Ann With Self-Selection – continued) The observation-

al-unit variable U is prior to the treatment variable X with respect to the filtration

presented in Example 3.3. Furthermore, X is prior to the outcome variable Y .

Similarly, { Joe }×ΩX ×ΩY, i. e., the event that Joe is drawn, is prior to X in this

filtration (see also Exercise 3-5). ⊳
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Some Properties of the Priority Relation

Now we study some properties of the priority relation introduced above. First of

all, we ascertain that the priority relation is asymmetric and transitive.

Theorem 3.12 (Asymmetry and Transitivity of the Priority Relation)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A .

(i) If C is prior to D in (Ft , t ∈T ), then D is not prior to C (asymmetry).

(ii) Let E ⊂A . If C is prior to D and D is prior to E in (Ft , t ∈T ), then C

is also prior to E in (Ft , t ∈T ) (transitivity).

(Proof p. 63)

Remark 3.13 (Asymmetry and Transitivity) Because priority of measurable map-

pings is defined by their generated σ-algebras, Propositions (i) and (ii) of Theo-

rem 3.12 also hold for measurable mappings Xi , i = 1,2,3, taking the role of the

σ-algebras C , D, and E , respectively, presuming of course that (Ft , t ∈T ) is a fil-

tration in A . Similarly, these propositions also hold for sets Ai ∈ A , i = 1,2,3,

taking the role of these σ-algebras. ⊳

Remark 3.14 (Difference Variables) If X1 is prior to X2 with respect to (Ft , t ∈T ),

then X1 is also prior to X1 −X2 with respect to (Ft , t ∈T ) (see Exercise 3-6). ⊳

Remark 3.15 (Constant Difference) If X1−X2 =α, α ∈R , is a constant, then X1 is

not prior to X2, because then the σ-algebras generated by X1 and X2 are identical.

Hence, in this case the premise of Remark 3.14 does not hold. Note that X1 can be

prior to X2 in (Ft , t ∈T ) even if X1 =P
X2 (see Example 3.16). ⊳

Example 3.16 (Joe and Ann With Perfect Dependence of Y on X ) Table 3.2 dis-

plays an example that is very similar to Example 3.3. The measurable space

(Ω,A ), and the measurable mappings U , X , and Y are unchanged, and we con-

struct the filtration (Ft , t ∈T ) in the same way as in Example 3.3. Hence, X is

again prior to Y in (Ft , t ∈T ). However, now the dependence of Y on X is per-

fect. More precisely, X =
P

Y . The last column of Table 3.2 shows that the difference

variable X −Y is not a constant, i. e., X −Y 6= 0, although X −Y =
P

0, which means

P (X 6=Y ) = 0. This illustrates that the priority relation depends on the definition

of the measurable mappings (random variables) and on the construction of the

filtration, but not on the probability measure. ⊳

Remark 3.17 (Priority Relation Among Events) Sets (events) can be stretched

over several time points as well. If we consider again Example 3.3, then the events

A1 that Joe is sampled and treated and A2 that Joe is sampled, treated, and success-

ful are examples in case. According to our definition, A1 is prior to A2, because the

σ-algebra generated by {A1} is a subset of F2, whereas the σ-algebra generated by

{A2} is not a subset of F2, but a subset of F3 (see Exercise 3-8). These and sim-

ilar properties of the priority relation are stated in formal terms in the following

theorem ⊳
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Table 3.2. Joe and Ann With Perfect Dependence of Y on X

Outcomes ω Observables
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X
−

Y

(Joe, no, −) .48 Joe 0 0 0

(Joe, no, +) .00 Joe 0 1 −1

(Joe, yes, −) .00 Joe 1 0 1

(Joe, yes, +) .02 Joe 1 1 0

(Ann, no, −) .12 Ann 0 0 0

(Ann, no, +) .00 Ann 0 1 −1

(Ann, yes, −) .00 Ann 1 0 1

(Ann, yes, +) .38 Ann 1 1 0

Theorem 3.18 (Implications of the Priority Relation)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A .

(i) If C is prior to D in (Ft , t ∈T ), then C is also prior to C ∪D and to

σ(C ∪D ).

(ii) Let E ⊂ A . If C and D are prior to E in (Ft , t ∈T ), then C ∪D and

σ(C ∪D ) are also prior to E .

(iii) If C is prior to D and to E in (Ft , t ∈T ), then C is also prior to D∪E

and to σ(D∪E ).

(Proof p. 63)

Remark 3.19 (Implications on Priority Among Measurable Mappings) This the-

orem also applies to priority among measurable mappings (random variables).

Hence, if the assumptions of Theorem 3.18 hold, and if Y : (Ω,A )→(Ω′
Y ,A ′

Y ) and

Z : (Ω,A )→(Ω′
Z ,A ′

Z ) are also measurable mappings, then the following proposi-

tions hold:

(i) If X1 is prior to X2 in (Ft , t ∈T ) and σ(Y ) ⊂ σ(X1, X2) and σ(Y ) 6⊂ X1, then

X1 is also prior to Y .

(ii) If both X1 and X2 are prior to Z in (Ft , t ∈T ) and σ(Y ) ⊂σ(X1, X2), then Y

is prior to Z .

Examples in case for measurable mappings of X1 and X2 mentioned above are

Y =α1 X1 ·α2X2 and Y = α1X1 −α2X2, where α1,α2 ∈R , α1 6=α2. ⊳
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3.3 Simultaneity Relation

In chapter 2 we already discussed that random variables can be simultaneous

to each other. As an example we mentioned a variable Z representing a second

treatment that can be given (or not given) at the same time as the first treatment

represented by X . As another example, consider studying the effects of M1 =

amount of antibodies at time t . In such an application, we might also consider

a second variable, say M2 = amount of leucocytes at time t referring to the same

time point. Then M1 and M2 would be simultaneous to each other.

In the definition of the simultaneity relation we have to presume that the in-

dex set T is finite or, if this is not the case, that the filtration (Ft , t ∈T ) is right-

continuous. A filtration (Ft , t ∈T ) in a σ-algebra A is right-continuous, if

∀s ∈T : Fs =
⋂

s< t

Ft . (3.10)

Using this concept, the simultaneity relation of set systems can be defined as fol-

lows:

Definition 3.20 (Simultaneity Relation of Set Systems)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A.

Furthermore, assume that T is finite or (Ft , t ∈T ) is right-continuous. Then

we say that C and D are simultaneous in (Ft , t ∈T ), if :

(a) there is a t ∈T with C, D ⊂Ft

(b) there is no s ∈T , s < t , with C ⊂Fs or D ⊂Fs .

Remark 3.21 (The σ-Algebra of (Ft , t ∈T ) Simultaneous to C ) Let the assump-

tions of Definition 3.20 hold. Then the σ-algebra Ft satisfying

(a) there is a t ∈T with C ⊂Ft

(b) there is no s ∈T , s < t , with C ⊂Fs ,

is also denoted Ft C
and called the σ-algebra of (Ft , t ∈T ) simultaneous to C .

Hence, tC is that element of T that satisfies (a) and (b) with t = tC . ⊳

Remark 3.22 (The σ-Algebra of (Ft , t ∈T ) Simultaneous to X ) If X : (Ω,A )→(Ω′
X ,A ′

X)

is a measurable mapping, then the σ-algebra Ft satisfying (a) and (b) of Remark

3.21 with C = σ(X ) and t = tX is also denoted FtX
and called the σ-algebra of

(Ft , t ∈T ) simultaneous to X . ⊳

Remark 3.23 (Simultaneity Relation of Sets) Let (Ω,A ) be a measurable space,

(Ft , t ∈T ) a filtration in A, and A1, A2 ∈ A . Then we say that A1 and A2 are si-

multaneous in (Ft , t ∈T ), if (a) and (b) of Definition 3.20 hold with C = {A1} and

D = {A2}. Because {A } ⊂ Ft if and only if A ∈Ft , we can conclude that A1 and A2

are simultaneous if and only if

(a) there is a t ∈T with A1, A2 ∈Ft , and
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(b) there is no s ∈T, s < t , with A1 ∈Fs or A2 ∈Fs .

⊳

Remark 3.24 (Simultaneity Relation of Measurable Mappings) Let (Ω,A ) be a

measurable space, (Ft , t ∈T ) a filtration in A, and Xi : (Ω,A ) → (Ω ′
i ,A ′

i ), i = 1,2,

measurable mappings. Then we say that X1 and X2 are simultaneous in (Ft , t ∈T ),

if (a) and (b) of Definition 3.20 hold with C =σ(X1) and D =σ(X2). ⊳

Remark 3.25 (Simultaneity of σ-Algebras) Let (Ω,A ) be a measurable space,

(Ft , t ∈T ) a filtration in A, and C , D ⊂ A. Because Fs and Ft are σ-algebras,

Proposition 1.11 of SN implies that C and D are simultaneous in (Ft , t ∈T ) if and

only if

(a) there is a t ∈T with σ(C ), σ(D )⊂Ft , and

(b) there is no s ∈T, s < t , with σ(C )⊂Fs or σ(D )⊂Fs .

⊳

Remark 3.26 (Comparing Sets to Set Systems) We say that the set A and the mea-

surable mapping X are simultaneous in (Ft , t ∈T ), if {A } and σ(X ) are simultane-

ous. Similarly, a set system E and a random variable X are called simultaneous in

(Ft , t ∈T ), if E and σ(X ) are simultaneous. Finally, a set system E and a set A are

simultaneous in (Ft , t ∈T ), if E and {A } are simultaneous. ⊳

Example 3.27 ( Joe and Ann With Self-Selection – continued ) In Example 3.3,

the observational-unit variable U , the random variable Z := sex, and the event

{ Joe }×ΩX ×ΩY that Joe is sampled are simultaneous in the filtration (Ft , t ∈T )

specified in Example 3.3. In this specific example, in which U only takes on the

values Joe and Ann , the σ-algebras generated by U , by Z , and by the set
{

{ Joe }×

ΩX ×ΩY

}

are identical. Even if we consider an example, in which there is at least

one more person in the set ΩU, then the three σ-algebras are still simultaneous,

because the σ-algebras generated by Z and by the event
{

{ Joe }×ΩX ×ΩY

}

that

Joe is sampled are subsets of the σ-algebra generated by U and because the first

σ-algebra F1 in the filtration has been defined to be the σ-algebra generated by

U . Hence, conditions (a) and (b) of Definition 3.20 hold for theσ-algebras generated

by Z , by U , and by the event
{

{ Joe }×ΩX ×ΩY

}

. ⊳

Properties of the Simultaneity Relation

Now we study some elementary properties of the simultaneity relation. First of

all, we show that the simultaneity relation is reflexive, symmetric, and transitive.

Theorem 3.28 (Reflexivity, Symmetry and Transitivity)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A.

(i) If there is a t ∈T with C ⊂Ft and no s ∈T , s < t with C ⊂Fs , then C

is simultaneous to itself (reflexivity).
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(ii) If C and D are simultaneous in (Ft , t ∈T ), then D and C are simul-

taneous (symmetry).

(iii) Let E ⊂ A . If C and D as well as D and E are simultaneous in

(Ft , t ∈T ), then C and E are simultaneous in (Ft , t ∈T ) (transitivity).

(Proof p. 64)

Remark 3.29 (Simultaneity of Measurable Mappings) Because simultaneity of mea-

surable mappings (random variables) is defined by their generated σ-algebras,

Remark 3.25 implies that propositions (i) to (iii) also hold for measurable map-

pings Xi , i = 1,2,3, taking the role of the set systems C , D, and E , respectively.

Remark 3.25 also implies that propositions (i) to (iii) also hold for the sets (events)

Ai ⊂A , i = 1,2,3, taking the role of the set systems C , D, and E , respectively. ⊳

Similar to what has been said in Remarks 3.14 to 3.17, one of the virtues of Defi-

nition 3.20 is that it also applies to difference and product variables. The following

theorem is the foundation for propositions on simultaneity of such variables.

Theorem 3.30 (Implications of Simultaneity)

Let (Ω,A ) be a measurable space, (Ft , t ∈T ) a filtration in A, and C , D ⊂A.

(i) If C and D are simultaneous in (Ft , t ∈T ), then C and C ∪D as well

as C and σ(C ∪D ) are simultaneous in (Ft , t ∈T ).

(ii) Let E ⊂A . If C , D, and E are simultaneous in (Ft , t ∈T ), then C ∪D

and E as well as σ(C ∪D ) and E are simultaneous in (Ft , t ∈T ).

(Proof p. 64)

Remark 3.31 ( Implications on Simultaneity of Measurable Mappings )

Similar propositions also apply to simultaneity of measurable mappings. Hence,

if the assumptions of Theorem 3.30 hold, and if Y : (Ω,A )→(Ω′
Y ,A ′

Y ) and Z : (Ω,A )→(Ω′
Z ,A ′

Z )

are measurable mappings, then the following propositions hold:

(i) If X1 and X2 are simultaneous in (Ft , t ∈T ) and σ(Y ) ⊂σ(X1, X2), then Y is

prior or simultaneous to X1 in (Ft , t ∈T ).

(ii) If X1, X2, and Z are simultaneous in (Ft , t ∈T ) and σ(Y ) ⊂σ(X1, X2), then

Y is prior or simultaneous to Z in (Ft , t ∈T ).

Note that a constant is also a measurable mapping of (X1, X2). As an example,

suppose that X1 and X2 are simultaneous in (Ft , t ∈T ) and consider Y = X1 −X2,

which is a measurable function of X1 and X2 (see Example 2.61 of SN). If Y =

X1 − X2 = α, α ∈R , then the σ-algebra generated by Y is {Ω,Ø}. This σ-algebra is

prior to X1 and to X2 unless X1 and X2 are simultaneous to the first σ-algebra F1

in the filtration (Ft , t ∈T ). ⊳

Remark 3.32 (Product Variables) If X1 is prior to X2 in (Ft , t ∈T ), then the prod-

uct X1 ·X2 is prior or simultaneous to X2 (see Exercise 3-7). ⊳
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To summarize, a filtration (Ft , t ∈T ) does not only represent the process we

refer to when we talk about causal effects, but it also allows to introduce the pri-

ority and simultaneity relations with respect to a filtration. In our context, these

relations apply to random variables, events, and sets of events.

3.4 Causality Space

Now we summarize the assumptions under which we can define causal effects

and meaningfully ask if conditional expected values such as E (Y |X=x) or E (Y |X=x, Z=z)

and/or conditional distributions such as P Y |X=x or PY |X=x ,Z=z describe causal de-

pendencies in a specific application. Just as a probability space (Ω,A,P ) is the

mathematical framework of every probabilistic model and of every proposition

about the dependence between events A and B or between random variables X

and Y, a causality space is the mathematical framework of causal probabilistic

models, propositions about causal probabilistic effects, and causal probabilistic

dependencies.

Compared to ‘ordinary’ stochastic models involving two random variables X

and Y, a causality space has an additional component, the filtration (Ft , t ∈T ) in

A that serves to define priority and simultaneity of events, random variables, and

σ-algebras. Aside from this additional component we presume that the cause X

is prior to Y with respect to (Ft , t ∈T ).

Definition 3.33 (Causality Space)

Let X : (Ω,A,P )→(Ω′
X ,A ′

X ) and Y : (Ω,A,P )→(Ω′
Y ,A ′

Y ) be random variables

and let (Ft , t ∈T ) be a filtration in A. Then 〈 (Ω,A,P ), (Ft , t ∈T ), X ,Y 〉 is

called a causality space, if X is prior to Y in (Ft , t ∈T ).

Remark 3.34 (Structural Prerequisites) Note that the dependence of Y on X in

a causality space, which might be described by the conditional distribution PY |X ,

or, if Y is numerical, by the conditional expectation E (Y |X ), does not necessarily

have a causal interpretation. So far, we only dealt with the structural prerequisites

that (a) make the question about causal effects and dependencies meaningful,

(b) allow us to define covariates and intermediate variables, and (c) allow us to

define causal effects and causal dependencies in the chapters to come. Also note

that, in Definition 3.33, neither X nor Y have to be numerical. Furthermore, the

index set T does not necessarily refer to a time set, although this will often be the

case. ⊳

Example 3.35 (Joe and Ann With Self-Selection – continued) All components of

a causality space have already been illustrated by the examples presented in Table

3.1 and in Table 4.1. In Exercise 3-9 we summarize the components of a causality

space for the example of Table 3.1. ⊳
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Box 3.1 Glossary of New Concepts

(Ft , t ∈T ) Filtration in A . Let (Ω,A ) be a measurable space.

Then a filtration in A is a family of σ-algebras Ft ⊂A

with Fs ⊂ Ft , if s ≤ t , where s, t ∈ T . It represents the

process that allows to define priority and simultaneity

of events, random variables, and σ-algebras. It also al-

lows to make the distinction between covariates of X

and intermediate variables of X and Y .

Priority relation A random variable X is prior in (Ft , t ∈T ) to another

random variable Y , if there is an s ∈T such that the

σ-algebra generated by X is a subset of Fs , the σ-al-

gebra generated by Y is not a subset of Fs , and there

is a t ∈T , s < t , such that the σ-algebra generated by

Y is a subset of Ft .

Simultaneity relation A random variable X is simultaneous to a random

variable Y in (Ft , t ∈T ), if there is a t ∈T such that the

σ-algebras generated by X and by Y , respectively, are

subsets of Ft , but there is no s ∈T , s < t , such that the

σ-algebra generated by X or the σ-algebra generated

by Y is a subset of Fs .

〈 (Ω,A,P), (Ft , t ∈T ), X ,Y 〉 Causality space. It summarizes the mathematical

structures and assumptions under which we can de-

fine causal effects and raise the question if the depen-

dence of Y on X has a causal meaning. It consists of a

probability space (Ω,A,P), a filtration (Ft , t ∈T ), the

focused cause X and outcome variable Y . It is called

numerical if Y is numerical with finite second mo-

ment E(Y 2). It is assumed that X is prior to Y .

FtX
The σ-algebra of the filtration (Ft , t ∈T ) that is simul-

taneous to X .

3.5 Summary and Conclusions

In this chapter we set the stage for defining causal effects and causal probabilis-

tic dependencies. We specified the structures and formulated the assumptions

under which we can define causal effects and meaningfully raise the question if

conditional expectations such as E (Y |X=x) or E (Y |X=x, Z=z) can be used to

describe causal effects or if conditional distributions such as PY |X=x or PY |X=x , Z=z

can be used to define (probabilistic) causal dependencies. The structures and as-

sumptions of a causality space do not presume that the cause X is a treatment

variable. X representing treatments, interventions, or expositions are just a typ-

ical applications. In other applications, the cause may also be an intermediate



62 3 Causality Space

variable, a latent variable, or even an attribute of the observational-units, for in-

stance. In the latter case, however, there will be no individual causal effects and

no manipulability of the cause on the individual level.

Filtration

We used the concept of a filtration for representing time order between sets

(events), measurable mappings (random variables), andσ-algebras (sets of events)

that may be causally related. Such a filtration is not only used for the definition

of the priority and simultaneity relations of random variables, events, and sets of

events, but also for the definition of covariates and intermediate variables.

Priority Relation

In the simple single-unit trials of experiments and quasi-experiments described

in chapter 2, the observational-unit variables and their their functions are al-

ways prior to the treatment variable, which itself is always prior to the outcome

variable considered. The priority relation allows to represent this asymmetry of

causal dependencies between random variables or between events. The basic

idea is to see if, in the filtration considered, the σ-algebra generated by one ran-

dom variable comes first and the σ-algebra generated by the other one comes

later. An important virtue of this conception is that events and random variables

can be stretched over several time points and the concept of priority will still ap-

ply. A similar argument applies to simultaneity.

We will use the asymmetry of the priority relation to represent the asymmetry

of a causal dependence, a necessary but not sufficient condition for a depen-

dence of Y on X to have a causal meaning. (Sufficient conditions will be intro-

duced in chs. 6 to 9.) The asymmetry implies that X cannot be causally depen-

dent on Y , if Y is causally dependent on X . Hence, reciprocal causality between

random variables will be excluded. Note, however, that this does not preclude

the idea of reciprocal causality altogether. It only means that reciprocal causal-

ity does not apply to random variables. We do not preclude reciprocal causality

between two stochastic processes. A stochastic process (Xt , t ∈T ) is a family of

random variables. Hence, X1 (e. g., anger expression of Jim at time 1) may cause

Y2 (e. g., anger expression of Jane at time 2) and Y1 (e. g., anger expression of Jane

at time 1) may cause X2 (e. g., anger expression of Jim at time 2), etc. (see, e. g.,

Kenny & Judd, 1996). Note that X1 and X2 are different random variables repre-

senting anger expression of Jim at time 1 and time 2, respectively. Similarly, Y1

and Y2 are different random variables representing anger expression of Jane at

time 1 and time 2. Furthermore, the asymmetry of the priority relation does not

exclude that manipulating motivation leads to higher achievement in a first ex-

periment and that manipulating achievement leads to a higher motivation in a

second experiment. While this example refers to random variables in two differ-

ent random experiments, the priority relation refers to random variables within

the same random experiment.
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Causality Space

A causality space summarizes the mathematical structure and the assumptions

under which we can meaningfully define causal effects and raise the question if

the dependence of Y on X describes a causal dependence. Aside from the proba-

bility space (Ω,A,P ) representing the random experiment considered, the cause

X and the outcome variable Y , it also consists of the filtration (Ft , t ∈T ) in A .

Outlook

Based on the notion of a numerical causality space, in chapter 4 we will intro-

duce the concepts of a total-effect true-outcome variable, a true total-effect vari-

able, true direct-effectvariable, and true indirect-effect variable. In chapter 5 we

then define average and various kinds of conditional total, direct, and indirect

effects. In chapter 6, we will introduce unbiasedness, a first causality condition.

Chapters 7 to 9 are devoted to a number of other causality conditions that imply

unbiasedness.

3.6 Proofs

Proof of Theorem 3.12

(i) If C is prior to D with respect to (Ft , t ∈T ), then there is an s ∈T such that C ⊂Fs , D 6⊂

Fs . If we assume that D is prior to C , then there is an r ∈T such that D ⊂Fr , C 6⊂ Fr .

Because (Ft , t ∈T ) is a filtration and D 6⊂ Fs , D ⊂ Fr , we can conclude s < r . Similarly,

C 6⊂Fr , C ⊂Fs implies r < s. This is a contradiction to our assumption.

(ii) If C is prior to D, then

(a) there is an r ∈T with C ⊂Fr and D 6⊂Fr ,

and if D is also prior to E , then

(b) there is a s ∈T, r < s, with D ⊂Fs and E 6⊂Fs , and

(c) there is a t ∈T, s < t , with E ⊂Ft .

(a) to (c) imply that there is an r ∈T with C ⊂ Fr , E 6⊂ Fr , and there is a t ∈T, r < t , with

E ⊂Ft .

Proof of Theorem 3.18

(i) If C is prior to D with respect to (Ft , t ∈T ), then:

(a) there is an s ∈T with C ⊂Fs and D 6⊂Fs ,

(b) there is a t ∈T , s < t , with D ⊂Ft .

Because (Ft , t ∈T ) is a filtration, it follows that

(c) C ∪D, σ(C ∪D ) ⊂Ft , and

(d) C ∪D, σ(C ∪D ) 6⊂Fs .
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Now, (a), (c), and (d) imply proposition (i).

(ii) If C and D are prior to E with respect to (Ft , t ∈T ), then:

(a) there is an r ∈T with C ⊂Fr and E 6⊂Fr ,

(b) there is an s ∈T with D ⊂Fs and E 6⊂Fs ,

(c) there is a t ∈T , r, s < t , with E ⊂Ft .

Without loss of generality, we can assume r ≤ s, which implies C ,D ⊂Fs , because (Ft , t ∈T )

is a filtration. However, if C ,D ⊂Fs , then:

(d) C ∪D, σ(C ∪D ) ⊂Fs .

Now (b), (c), and (d) imply proposition (ii).

(iii) If C is prior to both D and E with respect to (Ft , t ∈T ), then

(a) ∃r ∈T such that C ⊂Fr and D 6⊂Fr ,

(b) ∃s ∈T such that D ⊂Fs , E 6⊂Fs

(c) ∃ t ∈T , t > r, s such that D,E ⊂Ft , because (Ft , t ∈T ) is a filtration.

Without loss of generality can assume r ≤ s. Because E ⊂Fs implies E ⊂Fr , and therefore

(d) D∪E , σ(D∪E ) ⊂Ft 6⊂Fr ,

proposition (d) implies

(e) ∃ t > r such that D∪E , σ(D∪E ) ⊂Ft

Now (a), (d), and (e) imply proposition (iii).

Proof of Theorem 3.28

(i) Note that not every set system C ⊂ A necessarily occurs in (Ft , t ∈T ), i. e., we do not

presume that there is a t ∈ T such that C ⊂Ft . Therefore we have to make the assumption

“if there is a t ∈T . . . ” .

(ii) is trivial.

(iii) If C and D are simultaneous, then

(a) there is a t ∈T with C ,D ⊂Ft and no s ∈T , s < t , with C ⊂Fs or D ⊂Fs .

If D and E are also simultaneous, then this implies E ⊂Ft and that

(b) there is no s ∈T, s < t , with D ⊂Fs or E ⊂Fs .

However, this implies that there is a t ∈T with C ,E ⊂ Ft , and that there is no s ∈T, s < t ,

with C ⊂Fs or E ⊂Fs . Hence, C and E are simultaneous as well.

Proof of Theorem 3.30

(i) If C and D are simultaneous with respect to (Ft , t ∈T ), then:

(a) there is a t ∈T with C ,D ⊂Ft ,

(b) there is no s ∈T , s < t , with C ⊂Fs or D ⊂Fs .

(Ft , t ∈T ) being a filtration implies:

(c) C ∪D, σ(C ∪D ) ⊂Ft , and

(d) there is no s ∈T , s < t , with C ∪D, σ(C ∪D ) ⊂Fs .
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Now (a) to (d) imply proposition (i) .

(ii) If C , D, and E are simultaneous with respect to (Ft , t ∈T ), then:

(a) there is a t ∈T with C ,D,E ⊂Ft ,

(b) there is no s ∈T , s < t , with C ⊂Fs , D ⊂Fs , or E ⊂Fs .

(Ft , t ∈T ) being a filtration implies:

(c) C ∪D, σ(C ∪D ) ⊂Ft ,

(d) there is no s ∈T , s < t , with C ∪D, σ(C ∪D ) ⊂Fs .

Now (a) to (d) imply proposition (ii).

3.7 Exercises

⊲ Exercise 3-1 What are the additional components distinguishing a causality space from

a probability space (Ω,A,P)?

⊲ Exercise 3-2 What is a filtration (Ft , t ∈T ) in a σ-algebra A ?

⊲ Exercise 3-3 What is the basic idea of the priority relation between random variables?

⊲ Exercise 3-4 Construct a filtration (Ft , t ∈T ) for the random experiment of flipping a

coin two times and define two random variables X and Y such that X is prior to Y with

respect to (Ft , t ∈T ).

⊲ Exercise 3-5 Show that Z := sex is prior to X in Example 3.4.

⊲ Exercise 3-6 Prove the proposition of Remark 3.14.

⊲ Exercise 3-7 Prove the proposition of Remark 3.32.

⊲ Exercise 3-8 Consider Example 3.3 and Remark 3.17 as well as the events A1 that Joe

is sampled and treated and A2 that Joe is sampled, treated, and successful. Show that the

σ-algebra generated by the set system {A1} is a subset of F2, whereas theσ-algebra generated

by the set system {A2} is not a subset of F2, but a subset of F3.

⊲ Exercise 3-9 Define a filtration and the σ-algebra FtX
that is simultaneous to X for the

example ‘Joe and Ann With Self-Selection’ (see Table 3.1, p. 49).

Solutions

⊲ Solution 3-1 First, there is a filtration (Ft , t ∈T ) in the σ-algebra A of the probability

space (Ω,A,P), representing the different phases of the causal process in which the events

and random variables occur. Second, there are two random variables on the probability

space, say X and Y , where X represents the cause and Y the outcome variable considered.

⊲ Solution 3-2 A filtration (Ft , t ∈T ) in A consists of a set T on which there are relations

<, =, and ≤, and σ-algebras Fs and Ft with Fs ⊂Ft if s ≤ t , where s, t ∈T .
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⊲ Solution 3-3 The basic idea is to see if the σ-algebra generated by one random variable

comes first in the filtration (Ft , t ∈T ) and the σ-algebra generated by the other one comes

later. More formally speaking, if X : (Ω,A,P) → (Ω′
X ,A ′

X ) and Y : (Ω,A,P) → (Ω′
Y ,A ′

Y ) are

two random variables, then X is prior to Y if (a) there is an s ∈T with X −1(A ′
X ) ⊂ Fs and

Y −1(A ′
Y ) 6⊂Fs , and (b) there is a t ∈T, s < t , with Y −1(A ′

Y ) ⊂Ft .

⊲ Solution 3-4 The set of possible outcomes is Ω=
{

(h,h), (h, t), (t , h), (t , t )
}

, where, e. g.,

(h, t) represents the outcome of flipping ‘heads’ at the first flip and ‘tails’ at the second

flip. As the σ-algebra A on Ω we choose the power set of Ω and the probability measure

on A is defined by assigning the probabilities 1/4 to each elementary event {ω}, ω ∈ Ω.

This uniquely defines the probabilities of all other events A ∈A .

Next, we define F1 :=
{

Ω, Ø, {(h,h), (h, t)}, {(t ,h), (t , t )}
}

containing, aside from Ω and

Ø, the event {(h,h), (h, t)} to flip ‘heads’ at the first trial and the event {(t ,h), (t , t )} to flip

‘tails’ at the first trial. As a second σ-algebra we define F2 :=A . Then (Ft , t ∈T ), T = {1,2},

is a filtration, because F1 ⊂F2.

Finally, we define X to take on the value 1, if we flip ‘heads’ at the first toss and 0 other-

wise. Similarly, we define Y to take on the value 1, if we flip ‘heads’ at the second flip and

0 otherwise. Then X is prior to Y , because the σ-algebra generated by X is F1, which is a

subset of itself, whereas
{

Ω, Ø, {(h,h), (t ,h)}, {(h, t), (t , t)}
}

is the σ-algebra generated by Y,

and this σ-algebra is not a subset of F1, but of F2 (see Def. 3.1).

⊲ Solution 3-5 The first σ-algebra F1 in the filtration (Ft , t ∈T ), T = {1,2,3}, specified in

Example 3.4 is the σ-algebra generated by the observational-unit variable. Presuming that

the observational units are persons, Z := sex is measurable with respect to F1, whereas X

is not. However, X is measurable with respect to F2.

⊲ Solution 3-6 If X1 is prior to X2 with respect to (Ft , t ∈T ), then

X1 is also prior to X1 −X2 with respect to (Ft , t ∈T ).

⊲ Solution 3-7 Proof is still missing. To be shown: If X1 is prior to X2 with respect to

(Ft , t ∈T ), then X1 ·X2 is prior or simultaneous to X2.

⊲ Solution 3-8

A1 =
{

(Joe, yes, −), (Joe, yes, +)
}

= {U=Joe }∩ {X=1},

where

{U=Joe } =
{

(Joe, yes, −), (Joe, yes, +), (Joe, no, −), (Joe, no, +)
}

and

{X=1} =
{

(Joe, yes, −), (Joe, yes, +), (Ann, yes, −), (Ann, no, +)
}

.

Now F2 = σ[F1 ∪ X −1(A ′
X )] = σ[σ(U )∪σ(X )]. The definitions of σ(U ) and σ(X ) imply

{U=Joe } ∈ σ(U ) and {X=1} ∈ σ(X ), and the definition of the σ-algebra F2 = σ
[

F1 ∪

X −1(A ′
X )

]

implies {U=Joe } ∈F2 and {X=1} ∈F2. Finally, the definition of a σ-algebra im-

plies A1 = {U=Joe }∩ {X=1} ∈ F2 [see Eq. (1.7) of SN], Ac
1 ∈ F2, Ω ∈ F2, and Ø ∈ F2 [see

Def. 1.1 of SN]. This proves that σ({A1}) ⊂F2.

By definition,

F2 = σ
(

F1 ∪ X −1(A ′
X )

)

= σ
({

Ω,Ø,{U=Joe }, {U=Ann }, {X=0},{X=1}
})

.

The definition of a σ-algebra implies that the intersections B1 = {U=Joe }∩ {X=0}, B2 =

{U=Joe }∩ {X=1}, B3 = {U=Ann }∩ {X=0}, and B4 = {U=Ann }∩ {X=1} are elements of F2

[see again Eq. (1.7) of SN]. However, E =
{

B1,B2,B3,B4

}

is a partition of Ω and
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F2 = σ(E ).

According to Lemma 1.20 of SN, each element of F2 is a union of elements of E , except for

Ø. Because there are no elements of E such that A2 =
{

(Joe, yes, +)
}

is the union of these

elements, we can conclude A2 6∈ F2 and therefore σ({A2}) 6⊂ F2. However, A2 ∈ F3 and

therefore {A2} ⊂F3 , because F3 is the power set of Ω.

⊲ Solution 3-9 In this random experiment, the set of possible outcomes can be written

Ω = ΩU ×ΩX ×ΩY. The σ-algebra A is defined to be the power set of Ω. The filtration is

specified as follows: F1 is the σ-algebra generated by U , F2 is generated by (X ,U ), and F3

is generated by (X ,U ,Y ), which is also the power set of Ω. Aside from Ω and the empty set

Ø, the σ-algebra X −1(A ′
X ) generated by X consists of the sets X −1({1}) =ΩU × {yes }×ΩY

that the person drawn is treated and X −1({0}) =ΩU × {no }×ΩY that the person drawn is

not treated. The X -concurrent σ-algebra FtX
is F2.
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