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Abstract: Representation, uniqueness, meaningfulness, identifiability, and Lestability theo-
rems are proven lor (a) the model of essentially t-equivalent variables and (b) for the modcl
of t-congencric variables. both of which are shown to be derived measurement models. The
sct of observational units, the set of variables considered, and the conditional expectations
(given the units) of the observable random variables are the crucial components of the
derived measurement system. A number of fallacies that oftentimes appeared in the literature
are discussed. These fallacies concern the properties of the error variables, the relationship
between classical models and probabilistic models for categorical response variables, and the
empirical testability of the models. Aside from the well-known implications for the structure
of the covariance matrix of the observed variables, other empirically testable implications
concern subpopulations. The model of essentially 7-cquivalent variables implics the equality
ol the differences between the expectations of the observed variables in different subpopulu-
uons. whereas the model of t-congeneric variables implics the equality of the factor loadings
in different subpopulations. An example from state and trait anxicty rescarch illustrates some
of the theoretical results.

More than twenty years have passed since Novick’s seminal paper on The
Axioms and Principal Results of Classical Test Theory (1966) and exactly
20 years since Lord and Novick’s fundamental book on Statistical Theo-
ries of Mental Test Scores (1968). Although the models and procedures
proposed by these authors are widely used in empirical psychology as
measurement models (see, e€.g., the title of Allen & Yen’s (1979) book
Introduction to Measurement Theory), mathematical psychologists have
widely ignored this class of models following the verdict of Suppes and
Zinnes (1963) according to which psychological tests are “pseudopointer
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instruments”’, the readings of which “do not correspond to any Anown
fundamental or derived numerical assignment” (p. 21 italics in the origi-
nal). Although this statement does not hold true any more with respect to
models for categorical response variables (see, e.g., Hamerle, 1979; 1982),
it has still been valid with respect to models of classical psychometric test
theory.

The present article is intended to fill this gap of knowledge indicated by
Suppes and Zinnes and to serve as a basis for a rational discussion of the
relationship between models of classical psychometric test theory, deter-
ministic models of measurement, and the probabilistic models of measure-
ment for categorical response variables. Two classical models are treated
in detail: (a) the model of essentially z-equivalent and (b) the model of
T-congeneric variables. Both are shown to be models of derived measure-
ment based on the conditional expectations of the observable (e.g., test-
score) variables given the observational units.

The organization of this paper is as follows: The introduction of the
formal framework is succeeded by a section on the representation, unique-
ness, meaningfulness, identifiability, and testability theorems for the mod-
el of essentially t-equivalent variables. Then an example with new data
from state and trait anxiety research illustrates several procedures of
empirical tests of this model. In the next section, the model of t-congeneric
vz_lriablcs is treated, again dealing with the theorems mentioned above. The
discussion (ocusses on the properties of the residuals, the relationship to
probabilistic models for categorical response variables, and the empirical
testability of the models.

1. The formal framework

1.1. The set of possible outcomes

Classical psychometric test theory (or theory of mental tests; Gulliksen,
1950; Lord & Novick, 1968) in its modern version presented by Zimmer-
man (1975, 1976) considers the following type of random experiments (see
Appendix, Note 1): A unit u (e.g., a person or a person-in-a-situation) is
sampled from a set U of observational units and the values of u with
respect to m manifest properties (e.g., test performances) are registered.
Hence, the set of possible outcomes of this kind of random experiment is
of the type

Q=UxA. (1)

If, for example, A = Q; x --- x Q_, each Q,iel: = {1,....,m}, may
be the set of possible values with respect to the ith manifest property (e.g.,
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test or item) to be observed. In this case, an outcome w = (W, w, ..., W,
e Q consists of an observational unit u and the values w,, ..., ©,, of the
unit with respect to the m manifest or observable properties. These values
might still be qualitative in nature or already numbers such as test scores.
Note that this way of defining the set Q will enable us to conceptualize
persons and their properties (such as their sex or their aptitude) as random
events or random variables (see, e.g., Eq. 3 below).

Examples. A person u is sampled from a set U of persons and his or her
raw test scores on two parallel forms of a personality questionaire are
registered. In this case, @ = U x N, x N, where N, denotes the set of
natural numbers including 0. The natural numbers are the possible raw
scores. As another example consider an ability test consisting of 10 prob-
lems that can be solved (+) or not (—). In this case Q@ = U x {+, —}'°,
where {4+, —}'% = {4+, —} x--- x {4, —} contains the 2'° possible
combinations such as {+, +, —, —, +, +, —, —, —, + .

1.2. The random variables

Next we consider the random variables Y,: @ - R,iel, (e.g., the test-
score variables) that map the possibly qualitative values (such as ““+” or
") of the m manifest properties considered into the set R: = IR U {o0}
w {— w0}, where R denotes the set of real numbers. It is assumed that the
Y, have finite and positive variances.

Note that we only require fixed rules of assigning numbers to the
possible outcomes. Especially, no measurement model is necessary ar t/is

first step. Stochastic measurement models use the Y-variables as their

empirical basis. Whether or not this basis is well-chosen, is not determined
a priori but by (a) the validity of the model built on the Y-variables and
by (b} its usefulness within a larger theory and its intended applications.
Of course, substantive heuristic theories may help to choose useful Y-vari-
ables.

Next, we consider the projection (see Appendix, Note 2) p: 2 - U, the
values of which are the units u € U, that is,

pu(®) = py((u,a)) =u, foreach weQ. (2)

Note that the mapping py is supposed to be a random variable, al-
though its values are not numbers but qualitative elements, namely the
observational units such as persons. (See, e.g., Bauer, 1978 or 1981, for the
general concepts of measure and probability theory such as nonnumerical
random variables.)
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1.3. The true-score variables, the residuals, and their properties

We now define the variables T; to be the conditional expectations (or
Synonymously, regressions: see Appendix, Note 3) of Y; given py:

tio = E(YIpy)., iel. 3)

If,In a given application, the units are persons, we may call the variable
T, the true-score variable (or person-regression) of the variable Y,;. The
values of such a person-regression 1, are the conditional expectations (or
true scores) E(Y;|py = u) of Y, given a person u. Note again that the t,
are random variables, the values of which are real numbers, the **true
scores™ of the units ue U.

The general properties of the residuals

gl=Y; = E(Y{|p,). iel. (4)
have been discussed in some detail by Steyer (1988): they may be written
as follows:

Yi=1+¢, iel, (5)

E@f(p,) =0, iel, for every py-measurable mapping  (6)
f(py) (see Appendix, Note 43,

Ee)=0, iel, (7)

EGlt) =0, ijel, (8)

Covig, f(py)) =0, iel, for every py-measurable numeri-  (9)
cal function f(p,)) (see Appendix.
Note 4),

Cov(e, 1) =0, i jel, (10)
Var(Y;) = Var(z) + Var(g,), iel, (11)

where Var( ) and Cov( , ) denote the variance and covariance, re-
spectively.

Comments. Note that Equation 8 is a special case of 6, and Equation 10
is a special case of 9. Equation 6 is the crucial one, because it implies the
Equations 7 to 11 (see Appendix, Note 5). In order to understand the
logical nature of the Equations 5 to 11, itis important to notice that none
of these Equations is an axiom. Instead, each of it is an immediate conse-
quence of defining the variables 7;and g by Equations 3 and 4 (for proofs,
see, e.g., Steyer, 1988; Tack, 1980; or Zimmerman, 1975). All equations
above are always true, that is, they are mathematical tautologies. They also
hold if the variables Y; are dichotomous (see, e.g., Fischer, 1974; Lord,
1980; Weiss, 1983).
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Another noteworthy point is that noncorrelation of the residuals (or
Cerrors”), Cov (g, &) =0,1%],1,j e, which has often been postulated as
an axiom in classical psychometric test theory, is not a consequence of
Equations 3 and 4 (see, e.g., Tack, 1980; Zimmerman, 1975; or Zimmer-
man & Williams, 1977). Hence, residuals can in fact be correlated among
each other in empirical applications, the consequences of which have been
discussed in detail by Zimmerman & Williams (1977).

It should also be noticed that the definition of the coefficient of deter-
mination

Rel(Y): =Ry, = Var(E(Y;|py))/Var(Y,)
= Var(t)/Var(Y,), if 0 < Var(Y)) <o, (12)

which is called the reliability coefficient in the context of classical psycho-
metric test theory. is neither based on the assumption of uncorrelated
CITOrs. nor on any assumption other than that the variance of the Y-vari-
ables are finite and greater than zero. Rel(Y;) = 0 indicates that the vari-
able Y is not determined at all by the observational units. If Y;is dichoto-
mous with values 0 and 1, Rel(Y;) = 0 means that the probability for
Y;=1 does not depend on the observational unit. that is.
P(Y,=1|p, =u) = P(Y,=1) forall ue U.

2. Essentially t-equivalent variables

Although the mathematical framework above is sufficient to properly
define the variables 1, ¢,. their variances and the concept of reliability, it
is not sufficient to derive formulas for the determination of the variances
of the ;, ¢, or of the coefficient of reliability from the variances. covari-
ances, correlations, or other characteristics of the common distribution of
the observable variables Y;. We will therefore introduce some assumptions
defining a model which (a) requires the Y-variables to be essentially t-
equivalent (e.g., resulting from parallel forms of a personality inventory)
and (b) that you register at least m = 2 of those variables. Later on we will
turn to a less restrictive set of assumptions, known as the model of z-con-
generic variables (Joreskog, 1971), which, in general, presupposes at least
m = 3 observed variables.

Although the model of essentially t-equivalent variables is well-known
(see,e.g., Lord & Novick, 1968; Fischer, 1974), it is often not wel] under-
stood. Many authors maintain that models of classical psychometric test
theory cannot be tested empirically. This is wrong as will be shown in this
section,

The Covariance Structure Theorem, for example, will reveal that the
model of essentially t-equivalent variables with conditional regressive in-
dependence, implies a one-factor model such as depicted in Figure 1. The
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readers familiar with confirmatory factor analysis (Lawley & Maxwell,
1971; Joreskog, 1967, 1969) are well aware of the testability of this kind
of models.

Ei—= 1Y, \
o[-0
& — | Y3 /

Figure 1. Arrow diagram of the factor model implied by the model of m =3
essentially T-equivalent variables with conditional regressive independence.

Less well-known and seldomly applied are tests of the cquality of the
differences between the expectations of the Y-variables in subpopulations.
The hypothesis of equal differences between the expectations of the
Y-variables in subpopulations is equivalent to the hypothesis of equal
coellicients /; in subpopulations (see Theorem 2.2 and Corollary 2.11 be-
low). This test has been proposed by Miiller (1980). (See also Moosbrug-
ger und Miller, 1982 and Moosbrugger, 1982). These tests do not rely on
a conditional independence assumption such as the one needed for the
derivation of the covariance structure.

In the following definition we refer to a probability space (€2, 1, P)
representing a random experiment characterized by Equation 1 in which
at least m = 2 Y-variables are observed. Later, we show that in such an
experiment the covariance of essentially t-equivalent and conditionally
regressively independent Y-variables yields the true score variance, and
that an empirically testable consequence is the equality of the covariances
of the Y-variables. However, such a test requires m > 3 Y-variables unless
further restrictions are introduced.

While these points are well-known, the treatment of the existence (or
representation), uniqueness, and meaningfulness theorems seem to be new.
These theorems not only clarify the logical structure of the model but also
bridge the gap between classical theory of psychometric tests and represen-
tation theory of measurement.

2.1. Definition (essentially t-equivalent variables)

The random variables Y,, ..., Y,, on a probability space (Q, 2, P) are
called essentially t-equivalent if and only if the following conditions hold:
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(a) (2,2 P) is o probability space such that Q = U x A.

(b) The projection p,: @ - U is a random variable on (€2, U, P).

(c) Yi', 1 E“l oo, m}, are numerical random variables on (2,9, P)
with finite and positive variances and covariances and E(Y,|py)
denotes the pu-conditional expectation of Y,,iel k

(d)  For cach pair (i, jye I x 1, there is a real number Ai; such that

E(Yilpo) = 4 + E(Y [ p). (13)

Comments. According to Condition 2.1 (d), the variables Y,, ..., Y, have

regressions 1:(Y, | b)) = ¢, that are essentially cquivalent, that is, the true

score variables ¢ are equivalent up to a translation (i.e., ljp to an addition
of a real constan; see Appendix, Note 6). In the following theorem (see

/\_P419611dix~ Note 7). a condition is formulated which is equivalent to Con-
dition 2.1 ().

2.2, Theorem (existence)

Th§ random variables Yy, ... Y, are essentially t-equivalent, if and only
if Conditions 2 { () (o (¢) hold as well as
(d)  there exist g (ic., at least one) numerical random variable t on
(€2, 1) and real numbers 4, such that
U(Yilpy) =4 +1, forcach iel. (14)
Remarks.

1 1 l\u-. viartance of 1 is finite because it is the same as the variance
OFE(Y, [ py)). The latter is finite because of Equation 11 and the
dsstmption (hat the variances of the Y-variables are finite.

(i) Condition (d) is equivalent to:

(d”) there exist o numerical random variable ¢ on (2,92, P) and real
numbers 4 such that
Yi=A4+714+¢, (15)
where g =Y, — E(Ypy),  foreach iel.
(i) Condition (d") is also equivalent to:

(d”) There exist a1 function @: U - R and rcal numbers J; such that

LOYipy=u)=A 4+ o), foreach iel. (16)

Comments. The tunction ¢ directly assigns a number to each observational
unit u € U. This number is identical with (w), if w = (u, a). Hence, both
T and ¢ characterize the observational units (c.g., persons), whereas A,
describes a property of the variable Y,. The latent variable t has the formal
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advantage over ¢ to be a random variable on (2, 2, P), the same proba-
bility space on which Y; and ¢; are random variables. Also observe that
is the composition of ¢ with py, i.e. T = @(py).

Before we deal with the uniqueness problem, consider the following
definition.

2.3. Definition (model of essentially t-equivalent variables)

M= (8, U, P), E(ylpy), 1. &) is called a model of essentially t-equiva-
lent variables if and only if

E(y[py): = (E(Y;Ipy), .-, E(Yalpu)), (17)
Conditions 2.1 (a) to (c), and Condition 2.2 (d’) hold.

Comments. In this definition, no new assumption are introduced. It just
contains a convenient way to summarize the assumptions already dis-
cussed in the paragraphs above. The next theorem shows that neither t
(and therefore also neither ¢) nor the coefficients 4; are uniquely defined
(see Appendix, Note 8).

2.4. Theorem (uniqueness)

(1) If = {(Q, U, P),E(y|py), 1. 4) is a model of essentially t-equi-
valent variables, and if for x e R:

T =1+« (18)
A=, —o, .., A, —a), (19)

> fem

then 7" = {(2, A, P), E(y|py), T, 4') is a model of essentially 1-
equivalent variables, too.

(1) If both .#: = (2, A P),E(ylpy), 1, 4> and 4" = {((Q, A, P),
E(y|py), T, 4) are models of essentially t-equivalent variables, then
there is an a € R, such that Equations 18 and 19 hold.

Comments. The results above imply that the differences between the values
of 7 (and therefore between the values of ¢) as well as between the coeffi-
cients A; are meaningful, that is, they are invariant under the admissible
transtormations, namely the translations. Hence, the variances ¢2 and the
reliabilities of the Y-variables are meaningful, too. In terms of Suppes and
Zinnes (1963), the paragraphs above deal with a derived difference scale in
the narrow sense (see Appendix, Note 9). o

In the following corollary we also consider the functions ¢, ¢': U — R,
which are related to © and v by © = @(py) and 7’ = ¢'(py), respectively.
Specifically, if E(Y,|py) = A, + 7/, then
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E(YiIpy=u) = 4 + ¢'(u) (20)
holds for ¢’.
2.5. Corollary (meaningfulness)

Ift: = ((Q, A P), E(ylpy). 1, A and /" = (R, A, P). E(y| pu), T, AD
are models of essentially z-equivalent variables, then

Hwy) ~ 1(wy) = T(wy) — T(w,), w,,w,eQ, (21
@u) = @(uy) = @'(u)) — ¢'(uy), u,,u,eU, (22)
Ly = Ay = A=A, L,jel, (23)

ol =q? (24)

olloy, = aljol, iel. (25)

Comments. The proof of this corollary is simple and left to the reader.
Note that this is not a complete list of all meaningful terms. In order (o
prove the theorems above, we do not need any assumption on the indepen-
dence of the errors among each other. However, such an additional as-
sumption will now be introduced in order to derive the next theorem on
the structure of the covariance matrix implied by the model. This theorem
is also the basis for solving the problem of the identification of the vari-
ances o. Note that all variables 7;, i € I, have identical variances if Con-
dition 2.2 (d’) holds, that is,

Var(z) = o, iel. (20)

Also remember that t and its associated vector 4 = (/. ..., A,) are not
uniquely defined. According to Theorem 2.3, there is a whole family of
pairs (t, 4), each pair of members being related to each other by a trans-
lation. In the following sections, (t, 4) denotes an arbitrary member of that
family. Before we formulate the Covariance Structure Theorem, let us
introduce the assumption of conditional regressive independence.

2.6. Definition (model of essentially t-equivalent variables with
conditional regressive independence)
M= {(Q, U, P), E(y|py), 1, 4) is called a model of essentially t-equiva-

lent variables with conditional regressive independence if and only if Condi-
tions 2.1 (a) to (d) hold and

ECYGIpu, Y, u Yo Yie g, .5 Yo = BE(Y, [ py). iel.  (27)

Comments. Equation 27 implies, among other things, uncorrelated residu-
als g2 =Y, — E(Y,|py). In fact, this is all we need in the present context.
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Hence we might replace this equation by the weaker assumption of uncor-
related residuals. However, Equation 27 gives more intuitive insight (see
Appendix, Note 10). Some implications of Definition 2.6 are collected in
the following theorem (see Appendix, Note 11).

2.7. Theorem (covariance structure)

If 4 = {(Q,, P), E(y|py), 7, 2> is a model of essentially t-equivalent
variables with conditional regressive independence, then, for i, j e I:

)z, i3],

Cov(¥e, Y) = {63 fal i=], 2
Cov(t,¢) =0, (29)
Cov(g, &) =0, 147, (30)

Comments. Formulated in terms of factor analysis, Definition 2.6 implies
a one-factor model with factor loadings equal to 1 (see Figure 1). Note
that this theorem is a first proposition dealing with the empirical testability
of the model. If there are m = 3 variables, the model of essentially t-equi-
valent variables with conditional regressive independence can be tested
empirically because Equation 28 then implies the equality of the covari-
ances Cov(Y, Y,),1 = j. If, for instance, m = 3, the covariance matrix X
has the following structure:

2 '7 2
ol + ol o} ol
— 2 2 2 2
Y=\ o o; + 0, 0; . (30)
2 2 2 2
o o; o, + o,

Statistical tests of this kind of hypotheses are implemented in well-
known computer programs such as LISREL (Jéreskog & Sérbom, 1984)
or EQS (Bentler, 1984),

The next theorem will show that and how the variances ¢7 and o can
be determined by the variances and covariances of the variables Y;. A proof
that the unknown parameters of a model can be computed from known
or estimable parameters such as variances and covariances of the observ-
able variables means to solve the problem of identifiability. 1ts solution is
the prerequisite for dealing with statistical problems such as estimation.

2.8. Corollary (identification of variances)

It A = {(Q,A, P), E(Y|py), T, 4y is a model of essentially t-equivalent
variables with conditional regressive independence, then, for i,jeI:
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o2 = Cov(Y,, Y), P+ (32)
ap, = Var(Y,) — Cov(Y,, Y)), i+]. (33)

Comments. This corollary (see Appendix, Note 12) 1s a constructive one in
the sense that it tells us how to determine the theoretical variances. Equa-
tion 32 shows that the variance of 7 and the variance of the error variables
(see Equation 33) can be determined by the variances and covariances of
essentially r-equivalent variables which are conditionally regressively in-
dependent.

The proportion of variance of Y; determined by r,, the reliability coeffi-
cient, is another meaningful parameter that can be determined from the
variances and covariances of the Y-variables. The relevant formulas are
displayed in the following corollary.

2.9. Corollary (identification of the reliability cocefficient )

If // = {(Q, M, P), E(y[py), 7, 4> is a mode] of essentially t-equivalent
variables with conditional regressive independence, then, for ,jel:

Var(z) gov(Yi, Y5)

Rel(Y;) = = o e
) = Far () T Vareyy (34)
Furthermore, if Var(Y,) = 3, for all ie 1, then:
Var(z;) ) , S
Rel(Y)) = Var(Y) = Cor(Y;, Y. i%j, ijel, (35)

where Cor( , ) denotes the correlation.

Comments. Using Corollary 2.8, the proof is simple and left to the reader.
If, in an application, the coefficient Rel (Y}) 1s greater than zero, one might
talk about the nontrivial existence of a latent variable.

We now turn to another empirical testable consequence of the model of
essentially t-equivalent variables, namely the equality of the differences
between the expectations of the Y-variables in different subpopulations.
This consequence does not rely on any independence assumption.

To be more precise, consider the event

QW ={weQ py(w) =ueUD}, UD c U PQI) >0, (36)
that the observational unit sampled belongs to subpopulation U, For
such an event there always exists the conditional probability measure
PO — {0, 1] on (Q, A) defined by

PDA): =P(A|QY)  forall Ae9. (37

Passing from the probability space (2, 2, P) to (Q, 9, Py simply means
to pass from the total population U to the subpopulation U, Keeping
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(2, 2) as a measurable space has mathematical advantages, because the
functions Y;: Q@ >R, 7: Q » R elc. are random variables both on the
probability space (22, 2, Py and on (2, A, P). However, the functions Y,
etc. have different distributions with respect to the probability measures P
and P,

2.10. Theorem (one subpopulation)

(1) U7 = Q. P), E(ylpy), 1, &) is a model of essentially t-equi-
valent variables and P is defined by Equation 37, then
A= (QUNCPYY E(y py). T 4> is a model of essentially
t-equivaldent, vanables (oo.

(i) If./Zisa model of essentially t-equivalent variables with conditional
regressive independence, then . Z") is a model of essentially t-equi-
valent vartables with conditional regressive independence, too.

Comments. (See Appendix, Note 13). Using identical symbols, especially
y:=(Y,,....Y,) and v in both .# and ./'") means that y and t are
identical Y-measurable functions in the two models .# and .#"'. (Note
again, however, that their distributions are not identical in the two mod-
els.) Correspondingly, the real vector 2 is identical in both models.

The crucial proposition of Theorem 2.10 is that (i) the t-va/ues (and
therefore the @-vahies) as well as the z-constants arc the same in the total
population and in a subpopulation, and that (i) in the model with condi-
tional regressive independence, the equalily restrictions on the covariances
(see Eqs. 28 and 31) still hold 1n the subpopulation. Again, this implication
is empirically testable. Note, however, that the covariances in the subpop-
ulations do not have to be identical to the covariances in the total popu-
lation.

Theorem 2.10 implies that the vector 1 will be identical in two different
subpopulations U" and U < U. If P denotes the probability measure
pertaining to the second subpopulation, we may formulate the following
corollary:

2.11. Corollary (two subpopulations)

(1 If.#: =R, P), E(ylpu), ©, 4 is 2 model of essentially t-equiv-
alent variables, then #": = {(Q, A, P, E(y|py), 7, 4> and
P = (Q, U, P, E(y|py). T, A> are models of essentially
t-equivalent variables, too, and for 1, je[:
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E(U(Y;) . E(l)(’yj) — E(Z)(Yi) - E(Z)(Yj), (38)
EN(Y; - Y,) =.E‘2’(Yi ~Y). (39)

() If.# isa model of essenuially T-equivalent variables with conditional
regressive independence, then .#™ and . 72 4re models of essential-

ly T-equivalent variables with conditional regressive independence
too. ’

Comments. The proof (see Appendix, Note 14)
additive decomposition of the Y-variables (scc I:‘quation 13). Equation 39
— which is equivalent with Equation 38 - iy 4 hypothesis about m — 1
independent equalities of the expectations of (difference-) variables. If
m = 2, and the additional assumptions of normality and homogcncil); of
vartances can be made, the statistical stand:rd procedure for such a hy-
pothesis is the t-test for independent groups. If ' m > 2, the multivariate
t-test applies, which can be computed, for instance s QPSS .
MAN(I)){)/A‘ I stance, by the SPSS-procedure
Hence, there are several procedures for the empirical test of the model
of essentially t-equivalent variables: (a) The (est fo the covariance struc-
ture in the total population. (b) The test of (he covariance structure in the
subpopulations. (c¢) The test of the equality of (he differences of the expec-
tations of the Y-variables in subpopulations. 1:ach of these tests can lead
to a rejection of the model. Note, however, tha points (a) and (b) rest on
the additional assumption of conditional regressive independence (or at
least, of uncorrelated error variables). V

1s essentially based on the

3. Example:
Essentially t-equivalent state anxiety test halves

The statistical test based on the theorems above will now be illustrated by
an example from state-trait anxiety research. 179 students of the Univer-
sity of Trier were assessed twice with the Sta(c-Trait Anxiety Inventory
(STAT; Laux, Glanzmann, Schaffner, & Spiciberger, 1981) with two
months between the two occasions of measurement. Table 1 displays the
sample means, the covariance and correlation matrices between the test
halves of the State Anxiety Inventory. Note that in the following para-
graphs, “test halves™ is an abbreviation for (hose random variables, the

values of which are the sum scores of the persons on the items defining the
test halves.
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Table | : Covariances, correlations and means of the state anxiety test halves in the
total sample.

SAy, SAy, SAp, SAz;
SA,; 24.670 0.879 0.399 0.439
SA,, 21.895 25.135 0.406 0.471
SA L, 10.353 10.624 27.239 0.904
SA,, 11.665 12.636 25.258 28.683
SA,, 20.296 22.011 21.475 22.860

Note. SA, - State anxicty, ith test half, k(h occasion. SA;, - means of the variables. The first
test half consists ol the items 2,3, 4,5,7, 8,12, 14,16, 17. the second of the items

~~~~~

1,6.9, 10, 11,13, 15,18, 19, 20. (Sce Appendix, Note 15.)

3.1, Testing the covariance structure within one occasion

First, we investigate whether or not the state anxiety test halves SA |, and
SA,, assessed at the first occasion of measurement, can be assumed to be
essentially t-equivalent, to be conditionally regressively independent, and
to have equal variances. As shown above, the assumptions of essentially
t-equivalent variables with conditional regressive independence imply a
special factor model (Lawley & Maxwell, 1971). Hence, the program LIS-
REL VI (Joreskog & Sorbom, 1984) can be used for data analysis. Of
course, additional assumptions concerning the sampling model (including
distributional assumptions) have to be made if maximum likelihood (ML)
estimation and the likelihood ratio test are to be applied. Details can be
found in the LISREL manual. The results of the analysis using ML.-esti-
mation are displayed in Figure 2.

E, 11 — SA11

821 — SA21 / 21.88

3.01
Figure 2. Arrow diagram of the factor model implied by the model of essentially
T-equivalent state anxiety test halves with conditional regressive independence for
the first occasion of measurement. The latent variable 7 is referred to as the latent
state anxiety variable pertaining to the {irst occasion. The numbers are the estimat-
ed variances of the corresponding variables. The variances of the error variables
are restricted to be equal. Criteria of model fit: (according to LISREL VI):
¥3 = 0.07, p = 0.79; goodness of fit (adj.) = 0.99, absolutely largest standardized
residual = 0.09.
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The test criteria given in Figure 2 reveal that there is no reason to reject
the model of essentially z-equivalent state anxiety test halves with condi-
tional regressive independence and equal error variances for the {irst
occasion. Furthermore, if we compare the variances and covariances esti-
mated under the model assumptions

Var(SA,,) = Var(SA,,) = 24.902 und Cov(SA,,, SA,,) = 21.895

with the empirical variances and covariances (see Table 1), we find a very
good model fit. Hence the reliability of the test halves may be estimated
by

Cov(SA,;, SA,,)/Var(SA,,) = 21.895/24.902 ~ 0.88 .

The latent state anxiety variable determines about 88 % of the variance
of a state anxiety test half. The remaining 12% are the proportion of the
error variances.

The test of significance above should be interpreted with some caution.
First, not rejecting the null hypothesis should not be confused with accept-
ing the null hypothesis. Second, the test is — in this case — only a test of the
equality of the variances of the two variables. A more powerful test of such
a model needs more than two variables which are assumed to be essentially
t-equivalent (see Section 3.3).

3.2. Testing the equality of the differences of the expectations
of the Y-variables in two subpopulations

According to theorem 2.11, the model of essentially t-equivalent variables
implies the equality of the expectations

EO(Y, — Y) = EP(Y, - Y), ijel,

in two subpopulations U and U*® of U. If we test this hypothesis for the
two state anxiety test halves assessed at the first occasion of measurement,
then m = 2, and we test the equality of the expectations

E(l)(SAn - SAZI) = E(z)(SAn - SA21) (40)

in two subpopulations U and U®. Possible subpopulations are men vs.
women or two different fields of study (i.e., psychology vs. others). Table 2
displays means, covariance, and correlation matrices of the state anxiety
test halves in the male and femal subsamples.
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Table 2: Covariances, correlations, and means of the state anxiety test halves in the
two subsamples.

Men (N = 89) Women (N = 90)

SA;, SA, SA,, SA,, SA;;, SA,, SA,, SA,,

SA |, 26.864  0.889  0.519 0.585 22771 0875 0.264 0278
SA,, 22782 24.440 0.547 0.634 21.220 25813 0274 0.319
SA |, 14562 14.647 29.306 0.900 6.345  7.002 25309 0908
SA,, 16.575 17.144 26.638 29.919 6.971 8513 24.021 27.256
SA,, 20.236 21.629 21.786 23.112 20.355 22.389 21.667 22.611

Note. Sce the note of Table 1.
Note that Equation 40 corresponds to the comparison of the differences
20.236 — 21.629 = — 1.393 und 20.355 — 22.389 = — 2.034

(see Table 2). The corresponding t-value with 177 degrees of freedom s
1.756 (p = 0.081) and is not significant on the 5%-level. Hence, this test,
too, gives no reason 1o reject the hypothesis that the test halves SA | and
SA,, are essentially T-equivalent.

This kind of model tests could be applied in different subsamples. Also,
the test of the covariance structure can be carried through in each of the
two subsamples (see Theorem 2.11). The data necessary for such a test are
displayed in Table 2. Instead of these tests, we now investigate ifthe model
of essentially t-equivalent variables with conditional regressive indepen-
dence can be postulated for all four test halves.

3.3. Testing the covariance structure across the two occasions

Essentially t-equivalent test variables may not only be constructed by
parallel test forms. They may also arise from repeated assessments Qf the
subjects with the same test. However, this requires temporal stability in the
sense that the latent variable does not change between occasions of mea-
suretnent, or at least that it only changes by a constant which is identical
for all persons in the population. _

We now test the assumption that the model of essentially r-equivalent
variables with conditional regressive independence holds for all four state
anxiety test halves (see Figure 3).
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& 1 - SAu

3.59

€2 — [SA,

2.64

®

21.048

\/

612 i Ssz

21.41

£20 — SAzz

21.07
Figure 3. Arrow diagram of the factor model implied by the model of essentially
T-equivalent state anxiety test halves with conditional regressive independence for
the two occasions of measurement. The numbers are the estimated variances of
the corresponding variables. The variances of the error variables wre not restricted
to be equal. Criteria of model fit: (according to LISREL VI): »2 = 315.34,

p = 0.00; goodness of fit (adj.) = 0.20, absolutely largest standardized residual
= 3.00. ,

The y*-value and the other criteria reveal that this model does not fit at
all, and therefore it has to be rejected. Hence, it was demonstrated how to
test the model of essentially t-equivalent variables (with conditional re-
gressive independence). While the tests within the first occasion of mea-
surement did not give any reason for a rejection of the model, the analysis
of both occasions lead to a rejection of the hypothesis that the model of
essentially t-equivalent variables with conditional regressive independence
holds for all four test halves. This is in accordance with the assumption
that the test halves measure stafes which can change between different
occasions of measurement.

A better model for these data is displayed in Figure 4. This model
assumes essentially t-equivalent test halves within each occasion of mea-
surement and uncorrelated errors between all four test halves considered.
According to this model, there is a separate latent state anxiety variable
for each occasion of measurement. Hence, this model may be called a
model of essentially t,-equivalent variables (with conditional regressive
independence), where k indicates an occasion of measurement. These
models are natural generalizations of the models treated in this paper (sce
Steyer, 1987; Majcen, Steyer, & Schwenkmezger, 1988; Steyer, Majcen,
Schwenkmezger, & Buchner, 1988).
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€4 — SAu
- \ @ |
"state auxxetyl"
€21 — [SAz ~ 21.97
2.85
11.32 (.48)
812 —_— SA12 \ /
2.85
“state anxietyz”
822 — SAZZ / 25.18
2.85

Figure 4. Arrow diagram of the factor model implied by the model of essentially
7, -cquivalent state anxiely test halves with conditional regressive independence.
The estimated correlation between the two latent state anxiety variables is 0.48.
The variances of the error variables are {ixed to be equal. Criteria of model fit
(according to LISREL VI): y2 = 7.54; p = 0.27; goodness of fit (adj.) = 0.97;
absolutely largest standardized residual = 0.61.

4. Congeneric variables

We now replace Condition 2.1 {d) by a less restrictive condition resulting
in the model of T-congeneric variables (cf. Joreskog, 1971). Again, we treat
the representation, uniqueness, meaningfulness, identifiability, and testa-
bility theorems. Figure 5 shows the factor model implied by the assump-
tions of this model if conditional regressive independence holds (see the
Covariance Structure Theorem).

g, — | Yi AL

£, — | Y, .)\*

E,a—b Ya {( : )
go— | Y, | 7 A

Figure 5: Arrow diagram of the factor model implied by the model of m = 4 r-con-
generic variables with conditional regressive independence.
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While the identification of the parameters requires only m = 3 Y-vari-
ables, a test of the covariance structure needs m > 4 of them, unless
further restrictions (such as the equality of some error variances or the
equality of some loadings) are imposed. Recall that the model of cssential-
ly t-equivalent variables with conditional regressive independence only
needed m = 2 Y-variables for parameter identification and m > 3 vari-
ables for a test of the covariance structure. Obviously, stronger assump-
tions require fewer observable variables and vice versa.

4.1. Definition (t-congeneric variables)

The random variables Y, ..., Y, are called t-congeneric it and only if
Conditions 2.1 (a) to (c) hold and:

(d) Foreach pair (i, )) € I x [, there are 4,55, 4;;, € R, 4;;{ > 0, such that
E(Y;lpy) = /j'VijO + )“ijl ’ E(Yj [py)- (41)

Comments. According to Condition 4.1 (d), the true-score variables
E(Y;|py) are positive linear functions of each other. This implies the
existence of a random variable v and of real numbers 4,4, A;; such that
E(Y;|py) = 4 + 4,1 T, where 4, > 0, for each i€ 1. This variable 7 is
uniquely defined up to a positive linear transformation, that is, if = fulfills
the requirements then also 7@ =a+ fr will fulfill it, where
a, fe R, f > 0. Also, the coefficients 4;, and Z,; are not uniquely defined.
This will be formulated more preciscly in the following theorems (see
Appendix, Note 16).

4.2. Theorem (existence)

The random variables Y, ..., Y, are called t-congeneric if and only if
Conditions 2.1 (a) to (c) hold as well as:

(d) there exist a numerical random variable 7 on (@, P) and
Aios 411 €R, A;; > 0, such that

E(Yilpy) = A + Ay 7, 1€l (42)

Remarks. The variance of t is finite following from Equation 11 and the
assumption that the variances of the Y-variables are finite. According to
Equation 42, the model of t-congeneric variables additively decomposes a
true score variable t;: = E(Y,|py) into a variable 4;, r and a parameter A,,.
Equation 42 implies that there is a function ¢:U — R such that
T = @(py). Hence, a value of the variable 1 is a parameter characterizing
the observational unit, whereas the constants 4,, and 4,, characterize the
variable Y;. This may be considered an example of nonadditive conjoint
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measurement, in this model, we simultaneously assign a real number to
each observational unit u and two real numbers to each variable Y, Before
dealing with the problem of the uniqueness of these assignments, consider
the following definition, which justifies the name t-congenerity.

4.3. Definition (model of t-congencric variables)

A= QU P), E(ylpy), T, 4o, 4, is called a model of t-congeneric
variables if and only if Conditions 2.1. (a) to (¢) and Condition 4.2 (d")
hold, and A, = (Z;q, .., Amo)s 410 = (Ayys o At

Comunents. As already mentioned above. neither t, nor the coefficients 7,
and 4;; are uniquely defined in this model. There is a whole family of
triples (1, 4y, 4;) fulfilling the requirements of Definition 4.3, and
(T. Ay, A ) will denote any member of this family. In other words, the triple
(T, Ay. A4 ) may be arbitrarily chosen; the only requirement is that Equa-
tion 42 holds for its components. The next theorem deals with the degree
of uniqueness of the latent variable t and the coefficients 4,y and A, .

4.4. Theorem (uniqueness)

(1) I .7 = QN P), E(y|py), T, Ag. 4, 18 @ model of t-congeneric
variables and for o, f e R, f§ > 0:

vi=at for o
Ry = Gryo = Ay 8B - s homo = Fy /B, &
All: = (/}-1 I/B: c /{ml/‘/}) * (45)

then 4" = {(Q. U, P), E(y|py), 1, 45, A1) 1s a model of t-con-
generic variables, too.

(i) Ifboth . #: = {(Q, U P), E(y|pu), T, 4o, 4, and A4": = {(Q, A, P),
E(y|py), 7, Ay, A7) are models of t-congeneric variables then there
are a, f e R, f > 0, such that Equations 43 to 45 hold.

Admissible transformations. According to this theorem (see Appendix,
Note 17), the latent variable 7 is uniquely defined up to a positive linear
transformation and the coefficients 4;, are uniquely defined up to a similar-
ity transformation (i.e., a multiplication by a positive real number). Hence,
the model of t-congeneric variables defines a family of triples (z, 44, 4,).
If both (z, 45, 4,) and (7, &, &}) are members of this family then the
components of these triples are related by the transformations described
above.
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Note that the transformations are closely interconncecied, |y
Tto T =« + [ - vimplies a transformation of both 4, A
and 45). Transforming tto ' =0 + B t only implies
Ay Transforming t to ' = « + 1 - 7 only implies a tr:

In the following corollary we also consider the fun
which are related to 7 and ©’ by

ansforming
1 (see Egs. 44
alranstormation of
wslormation of Ao
chons o, ' :U - R,

t=o(py) and ' =¢'(py), (46)
respectively. Specifically, if E(Y;|py) = A, + 4, 7', then
E(Yilpy=U) = 4, + Ay @' (u)
holds for ¢". (The proof is simple algebra and left (o (1. reader.

(47)
)

4.5. Corollary ( meaningfulness )

It/ = (2,9 P), E(y|py), 1, 4, Ay and A= (0w

P : A DY
T, Ay, %)) are models of t-congeneric variables, then (¥ IPv),

t(w) — 1(wy) _ T(w,) ~ T (w,)

T(@3) ~ t(@y)  T(@y) = T (wy) e (48)
o)) —@(uy) @' (u) — @' (uy)
o) — o(uy) @' (uy) — @' (uy)’ 1ot (49)
A A .
Tji‘:ﬁ’ Ljel, (50)
Jhol = Aiel, 51)
i olloy, = Ataljo}, iel. (52)

Comments. According to this corollary, ratios of diffcrences
ues of v and ¢ are invariant under the admissible (ic.,
transformations. Because of

Var(E(Y;|py)) = Var(z;) = A4 02, ict,

it follows from Equation 51, that the variances of the reg
are meaningful, and because of

Rel(Y) = 14 6%/o%,, iel,

1

between val-
Positive linear)

(53)
ressiony (Y py)

(54)
it follows from Equation 52 that the reliability coeflicieniy Rel(Y)) are
meaningful parameters. Note that this is not a complete fis( l
ful terms.

Our next theorem will formulate one of the em
quences of the model of t-congeneric variables. However, (1 tplication
requires the additional assumption of conditional regressive tdependence
which was not necessary to derive the propositions abaove.

'l meaning-

pirically (estible conse-
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4.6. Definition (model of t-congeneric variables
with conditional regressive independence)

M= {2, A, P), E(ylIpy), T, Ags 4, 1s called a model of t-congeneric
variables with conditional regressive independence if and only if Condi-
tions 2.1 (a) to (¢), Condition 4.2 (d'), and Equation 27 hold.

Remarks. Note that this definition implies that the covariances between
the Y-variables are positive as well as the coefficients /;; . The implications
of the model defined above for the structure of the covariance matrix are
treated in the following theorem (see Appendix, Note 18).

4.7. Theorem (covariance structure)

If /7 = {(Q, U, P), E(y|py), T5 49> 4, is @ model of t-congeneric vari-
ables with conditional regressive independence, then, for 1, je I:

j/llr /5 1,

. = 55

Cov(Y, ¥) 1/110 /J1+0h 1=, (33)
Cov(t, &) =0, (56)
Cov(e, &) =0, P, (57)

Comments. Formulated in terms of factor analysis, Definition 4.6 implies
a one-factor model with possibly unequal factor loadings (see Figure 5).
Since 7 is determined uniquely only up Lo a positive linear transformation,
the variance o2 is not a meaningful parameter per se. Also, the coefficients
A;; are no medmnoiul parameters per se, because these coefficients are
uniquely deimed only up to a similarity transformation. However, the
products A% ¢? are meaningful, because they are invariant under the ad-
missible udnsformatlons of the coefficients 4,4, 4;;, and the latent variable
7. The next corollary deals with the identification of the products Aot

(see Appendix, Note 19.

4.8. Theorem (identification of the products A}y of
and the error variances)

If A = Q, U P),E(¥|pyu) Ts 40, 41y is a model of t-congeneric vari-
ables with conditional regressive independence, then, for 1,3, ke I:

Cov(Y;, Y) - Cov(Y;, Yy
COV (YJ 3 Yk) |

ol = Var(Y;) — Var(t;) = Var(Y;) — Lol (59)

ifjifkj+k, (58

2 2
Apop =
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Comments. Equation 58 shows that, for given varidbles Yi, -0 Yy (with
a given common distribution), the product 13 o2 is a given positive real
number, because Definition 4.6 implies that the eovariances of the Y-vari-
ables and the coefficients 4;; are positive. Hence, it follows from Equation
58 that if o} is fixed to an arbitrary positive real number (e.g., 2 = 1), then
each coefficient 4;,, 1 € I, may be computed from Equation 58. Vice versa,
if one of the coefficients Z;; is fixed to an arbitrary positive real number
(e.g., 41, = 1), then also o} may be computed from Equation 58). In the
case 4;, = 1, the other coefficients 4;;, 1 # j €I, may be computed from

o (Cov(Y Y - Cov(Y, Y\ . |
it Cov(Y,,Y) o’ JFkrE Ll J’k’l#l((;o)

Comments. As already mentioned above, the variance of 7 is not meaning-
ful and not of interest per se. However, the variances of the variables
7; = E(Y,| py) are meaningful (see Eqgs. 51 and 53). Furthermore, the pro-
portion of variance of Y; determined by t;, the reliability coefficient, is
another meaningful parameter that does not depend on the specific choice
of 7 (see Egs. 52 and 54). The relevant formulas for the identification of
the reliability coefficient are given in the following theorem.

4.9. Theorem (identification of the reliability coefficient)

If ./ = (€2, ‘)I., P), E(y|pu)s T, 4g,> 4 18 @ model of 7-congeneric vari-
ables with conditional regressive independence, then, for i, j, ke I:

Var(t;) _ Cov(Y;, Y)) - Cov(Y;, Yy)
Var(Y;) Cov(Y;, Y- Var(Y;)

Furthermore, if Var(Y;) = gy, for all ie 1, then, for i, ke l:

Var(r;)  Cor(Y;, Y;) - Cor(Y;, Yy )
Var(Y,) Cor(Y;, Yi) |

Cominents. The proof is well-known (see, e.g., Lord & Novick, 1968,
p. 218) and simple if Equation 55 and the rules of computation for covari-
ances are used. Obviously, we need at least 3 Y-variables to identify the
reliability coefficient in the model of t-congeneric variables with condi-
tional regressive independence. In the model of essentially t-equivalent
variables with conditional regressive independence 2 Y-variables were
sufficient.

Rel(Y)) =

i4ji+kij+k. (61

Rel(Y,) =

P+jidk k. (62)

Testability. Recall that the model of essentially t-equivalent variables with
conditional regressive independence implies the equality of the covariance
Cov(Y;, Y;) which is empirically testable if m = 3 (see Equations 28 and
31). This property does not hold any more for the model of t-congeneric
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variables. However, Equation 55 puts a weaker restriction on the covari-
ances if there are at least m > 4 variables. According to Equation S5, if
there are m = 4 variables Y|, their m - (m — 1)/2 = 6 covariances can be
computed from four parameters. If ¢ is fixed to 1 (see last three para-
graphs), these four parameters are the factor loadings 4,, to 4. If,
however, 4, is fixed to 1, these four parameters are the factor loadings 4,,
to 44, and 7. Tests of this kind of restrictions on the covariance matrix
are implemented in the programs on simultaneous equation models men-
tioned before. If, however, there are only m = 3 variables Y,, then there
are only m - (m — 1)/2 = 3 covartances to be computed from 3 factor
toadings (if o7 is fixed to 1). In this case the model of t-congeneric vari-
ables with conditional regressive independence does not impose any em-
pirically testable restrictions on the covariance matrix.

Imiplications concerning subpopulations. We now turn to other empirical
testable consequences of the model of 7-congeneric variables. Unfortu-
nately, there seems to be no analogue to the equality of the differences
between the expectations of the Y-variables in different subpopulations,
which has been shown to be implied by the model of essentially t-equiva-
lent variables (see Cor. 2.11). In the following theorems, we make use of
the notation and concepts introduced in the corresponding parts of Sec-
tion 2 (see Appendix, Note 20).

4.10. Theorem {one subpopulation)

(1) 4= (82, U P), E(y|py), T, A9, 4, is @ model of t-congeneric
variables and PV is defined by Equation 36, then .4™": = ((Q, A, P,
E(y|py), t, 49, 4, 1s 2 model of z-congeneric variables, too.

(i)  If .4 is a model of t-congeneric variables with conditional regressive
independence, then .# is a model of t-congeneric variables with
conditional regressive independence, too.

Comments. Again, using identical symbols, such asy: = (Y,, ..., Y,) and
7 in both .# and .#'" means that y and t are identical U-measurable
functions in the two models .# and .#". (Note again, however, that their
distributions are not identical in the two models.) Correspondingly, the
real vectors 4, and 4, are identical in both models. Furthermore, the values
of © (and therefore the values of @) in the total population and in a
subpopulation are identical. According to proposition (ii), the conditional
regressive independence also carries over to a subpopulation.

Theorem 4.10 implies that the vectors 4, and 4, are identical in two

different subpopulations UY and U® < U. Under the additional as-

sumption of conditional regressive independence, this is another empiri-
cally testable implication of the model. Note that the assumption of con-
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ditional regressive independence, or at least the assumption of un-
correlated errors is necessary, because otherwise 4, would not be identi-
fied. If P*) denotes the probability measure pertaining to the second

subpopulation, we may formulate the following corollary (see Appendix,
Note 21).

4.1. Corollary (two subpopulations)

1 If A= QU P), E(y|py), T, A9, 4,) is a model of T-congeneric
variables, then .4V = (Q, A, PYY E(y|p,), 1. Ao, 4> and
‘,’"/ﬂ‘): = QN P, E(y|py), T, Ao, 4, > are models of T-congener-
1¢ variables, too.

(i) [t“,// is a model of t-congeneric variables with conditional regressive
independence, then .#" and .#® are models of T-congeneric vari-
ables with conditional regressive independence, (0o0.

Comments. It should be observed that proposition (1) does not imply any
empirically testable hypotheses. However, proposition (ii) is empirically
testable, but this test relies on the conditional independence assumption.
Hypotheses of the type

U (2 ) 5(2)
Ay =Ag L Ay =AY,

H,:
" Coviiyg,, ) =Covi¥(e,, e) =0, i%], i,jel,

(63)
may easily be tested using the programs for simultaneous equation
models already mentioned. Note that the corollary above does
not imply the variances Var'’(t) and Var®(z) to be equal in
the two subpopulations. The distributions of 7 in the two subpopula-
tions are not restricted by the model of T-congenerity with conditional
regressive independence. Also note that the Y-variables usually can not be
used to define the subpopulations U™ and U® g long as there is a
positive variance for each of the error variables ¢. Examples for criteria
that may be used to partition U into subpopulations have been given in
Section 3.

To summarize, there are two procedures for the empirical test
of the model of t-congeneric variables with conditional regressive
independence: (a) The test of the covariance structure in the total
population and (b) the test of the covariance structure in the sub-
populations with the equality restrictions formulated in Equa-
tion 63. Each of these tests can lead to a rejection of the model. Note
that no test is available which does not rely on the assumption of condi-

tional regressive independence (or at least, of uncorrelated error vari-
ables).
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5. Discussion

Our discussion will focus on four topics which seem appropriate to orga-
nize some of the methodological consequences of this article.

Properties of the error variables. A first point to be discussed are the
properties of the error variables defined by Equation 4. For instance, there
are criticisms of the theory of classical psychometric tests (CTT), denying
the noncorrelation between a residual and a true score variable (see Equa-
tion 10), or denying the expectation of vero for the residuals (see Equa-
tion 7; see, e.g., Buttgereit, 1980; Hilke, 1980; Zeller & Carmines, 1980,
p. 11). As long uas the definttions of the variables 1, and ¢, are accepted,
Equations 3 to 12 cannot be wrong in empirical applications. The only
thing that may be discussed in this context is whether or not the variables
7; or ¢ defined by Equations 3 and 4 are of substantive interest.

The relationship between classical and probabilistic models. Since Equa-
tions 3 to 12 are definitions and their implications, it should be observed
that these Equations do not constitute a model that could be wrong in an
application. These equations are shared by models for dichotomous Y-
variables (such as the Rasch model) as well. Since these equations are not
based on any restrictive assumptions, they are a mathematical background
for both types of models, although the models for dichotomous Y-vari-
ables do not explicitly use these equations. The Rasch model and the
model of essentially t-equivalent variables, for instance, differ only in their
decomposition of the conditional expectations t; = E(Y,|p,) (see Ap-
pendix, Note 6) and in the restriction of the Rasch model to dichotomous
Y-variables with values 0 and 1. Since the Rasch model deals with the
decomposition of t;, it implicily also deals with the error variable
& =Y; — 1;.

Another point of critique of classical psychometric test theory is that it
is said to be deterministic; according to those authors (see, e.g., Kubinger,
1986), this is in contrast to the so-called probabilistic models. However,
the probability P(Y = 1) that a dichotomous variable Y with values
0 and 1 takes on the value 1 is and expectation. Recall that the
expectation of a discrete variable Y with n different values is defined
E(Y): = > y;- P(Y =y,). Hence, if Y is dichotomous with values 0 and
1, then E(Y)=1-P(Y =1)+ 0 -P(Y =0) = P(Y = 1). The same kind
of argument holds for conditional expectations and probabilities. The only
difference is that, in some classical models, the true score variable
7,0 = BE(Y|py) = P(Y, =1|py) is additively decomposed such that
T, = A4 + 17, 4, € R, (see the model of essentially t-equivalent variables),
whereas in the Rasch model the decomposition is additive in the logits, that
is, In (t;/(1 — 1)) = t* + A¥, or equivalently,
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_exp(t* 4+ 4f) .

Titep@ra H R (4

Both classes of models are stochastic or probabilistic. Hence, classical
vs. probabilistic 1s a misleading dichotomy.

Note that the model of essentially t-equivalent variables will even hold,
for instance, if the variables Y; are dichotomous provided that they are
parallel. The variables Y;, 1€ 1, are called t-parallel if and only if Condi-
tions 2.1 (a) to (d) hold with 4;; = 0 for each pair of Y-variables and
Var(Y;|py) = Var(Y,|py),i.j € I. However, if the variables Y, arc di-
chotomous and not parallel, they may only be essentially t-equivalent in
very special cases (see Appendix, Note 22). (For an example, scec Moos-
brugger, 1985.) If there are dichotomous variables Y; with values 0 and 1,
the Rasch model (see, e.g., Anderson, 1980; Fischer, 1974: Rasch, 1960/
1980) should be considered instead of the model of essentially t-equivalent
variables.

Empirical testability. Another point to be discussed is the objection that
models of classical psychometric test theory cannot be tested empirically.
While it is certainly true that they are hardly ever tested, it is not correct
to maintain that they cannot be tested, because of their mathematical
structure. It was shown above that and /iow such tests can be conducted.
Hence, if the models presented are considered models of classical test
theory, models of classical test theory can be tested empirically.

Qualitative vs. quantitative basis of measurement models. Oftentimes, peo-
ple object basing a measurment model on “arbitrarily” assigned numbers
such as test scores. According to their argument, it has to be shown
empirically that a relation (with specific properties) on the set of objects
to be measured must be given before the assignment of numbers is justi-
fied. Although this principle might be heuristically fruitful in some re-
search, it should not become a dogma. In the models treated in this article,
a similar principle is involved according to which the conditional expecta-
tions have to fulfill certain restrictions. Only if these restrictions are met,
we may meaningfully introduce the latent variable T and the function ¢
which assigns numbers to the observational units. Hence, the choice of the
Y-variables is restricted by the assumptions and properties of the model.

Choosing the Y-variables should also be based on substantive consider-
ations, and the same is true for the choice of the basic relations on the set
of objects in deterministic measurement models. Logically, starting with
test score variables has the same justification as starting with qualitative
observations. The latter, too, are arbitrarily selected. Preferring one over
the other can only be justified by substantive arguments, not by logical
ones. For instance, the points raised by Epstein and O’Brien (1985) in the
person-situation debate (e.g., broadness of trait to be investigated) may
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serve as an argument against model building on qualitative item levels.
However, this is a substantive argument; no general recommendation can
be made on logical grounds. If the purpose is to count pieces of fruit, it is
not necessary to count apples and pears separately, although the latter
procedure has is merits if the purpose is to study the diversity of fruit. In
other words, whether starting with certain numerical random variables is
fruitful or not, should be determined (a) by model tests and (b) by the
usefulness of the model for the practical purpose considered.

6. Summary and conclusion

In this paper the basic concepts of classical psychometric test theory were
treated following the reformulation presented by Zimmerman (1975).
Aside from a more convenient notation, representation, uniqueness, and
meaningfulness theorems were derived which clarify the scale level of the
latent variables. These theorems were supplemented by theorems on iden-
tifiability and testability, explicating the logic of measurement via models
of classical psychometric test theory. It was emphasized that, aside from
the well-known implications for the structure of the covariance matrix of
the observed variables, there are other empirically testable implications
concerning subpopulations. The model of essentially t-equivalent vari-
ables implies the equality of the differences between the expectations of the
observed variables in different subpopulations, whereas the model of
t-congeneric variables implies the equality of the factor loadings in differ-
ent subpopulations.
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Appendix

Note [: The random experiments considered are not the sampling experi-
ments which would consist of repeating the experiment considered several
times. Sampling experiments are of a technical nature; they are necessary
for the purposes of estimation and testing. If the parameters were already
known we would never conduct sampling experiments. Substantive theory
would only be concerned with the random experiments characterized by
Equation 1. Statistical models which characterize the sampling process are
not treated in this paper.
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Note 2. Observe that a random variable need not necessarily be numerical.
The projection py, for example, is nonnumerical; its values are the obser-
vational units ue U. A probability space (2, 2, P) can always be con-
structed such that py has a distribution. The basic concepts of measure
theory and probability theory used in this paper can be found in books
such as Bauer (1978, 1981), Billingsley (1986), Breiman (1968), Loéve
(1977, 1978), or Roussas (1973).

Note 3. The general concept of the regression (or the conditional expecta-
tion) E(Y[X) of a random variable Y given a possibly nonnumerical
random variable X might be new to some readers although it is well-
known in the literature since Kolmogorov’s (1933/1977) seminal work,
For most of this paper it will be sufficient to know that E(Y|X) is a
random variable the values of which are the conditional expectations
E(Y | X = x) of Y given that X takes on the value x. Mathematical intro-
ductions can be found in the books mentioned in Note 2. An introduction
for psychometricians and methodologically interested psychologists is giv-
en by Steyer (1988). Note that propositions and equations about condi-
tional expectations hold with probability 1 or almost surely with respect
to the probability measure P(P—as). Since this is well-known to mathe-
maticians and might be confusing for other readers, it will only be men-
tioned in the proofs given in this appendix if we simultaneously deal with
two probability spaces (see, e.g., Note 11).

Note 4 See one of the books mentioned in Note 2 for an introduction into
Fhe concept of measurability. The reader not interested in the mathemai-
ical details may simply read Equation 6 to hold for every mapping f(p,).
Let Z:Q— Q" be a mapping, let A be a o-algebra on Q, and let
‘21’.: = A Q27 (A)eU} (see, eg., Hinderer, 1980, p.78 and
Wxttmg, 1985, p.407). Z is defined to be py-measurable if and
only if Z ') < pi(Fy), where Z 1) = {Z7NA) Ae ',
po ! (Fo): = {po "(F): Fe &), and &,: = {(FcU:ipy'(F)ed.

Nore 5: It is easily seen that Equation 4 implies E(g|py) = 0, because
E(elpy) = E(Y; — E(Yi[py)lpy) = E(Yilpy) — E(E(Y;[pu)py) = E(Y,
Ipu) — E(Yi[py) = 0. In order to give some intuitive understanding: if
E(Yilpy=u)=0 for each value u of pu, then the property
E(Y {f(py(w) = f(u))) = 0 will also hold for every image f(u). This is the
essence of Equation 6. Now, if f is numerical, the regression line is parallel
to the axis of the regressor (Egs. 6 and 8), then the covariance and the
correlation between ¢; and its regressor will be zero, too (Egs. 9 and 10).

Np[e 6: The Rasch model may be defined by Conditions 2.1 (a) to 2.1 (d)
with two changes:

(a) the Y-variables are dichotomous with values 0 and 1;
(b)  Equation 13 is replaced by
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E(Yilpy) \ . E(Y,|py)
T A Sl 1 547 R _ = NIPY
“(1 TE(Y pu>> it ‘“(1 TE(Y| pu>> (65)

(see Hamerle, 1979, p. 35). Hence, in the Rasch model, the logarithms of
the odds ratios are translations of each other, whereas in the model of
essentially t-equivalent variables, the conditional expectations are as-
sumed to be translations of each other. Note that point (a) implies
E(Y,Ipo) = P(Y, = 11py).

An alternative, but equivalent way to define the Rasch model is to
postulate Conditions 2.1 (a) to 2.1 (c) and instead of Equation 65:

E(Y;Ipy) = P(Y; = = —- —" . AFeR, (65
( llpL) ( 11pU) 1+exp( T*)v /16 ( )
where t* is a real-valued random variable on (€, 2. P). Of course, the
variables Y, are assumed to be dichotomous with values 0 and 1. Note that
Equation 65 is also equivalent with

exp (A — %)

L= i s e ¥ IR, .
v 1+ exp (AF — ‘r*)+2' AT E (65"

where ¢, = Y, — E(Y,|py)- This shows that the Rasch model, too, implic-
itly dcals wuh the error variables ¢,. (See Note 10 for a remdrk on the
assumption of conditional regre%swe mdcpendc,me which is called “*local
stochastic independence™ in the literature on Rasch models.)

Note 7 ( Proof of Theorem 2.2): The proof is trivial: If we define, for
instance, 7: = E(Y,|py) and A;: = 4;,, then Equations 13 and 14 are
easily seen Lo be equ1va16nt Slml]drly if Equation 14 holds, then Equation
13 follows with A;; = 4 — 4;

Note 8 ( Proof of Theorem 2.4): Again, the proof of the first part trivial
and the second is simple: If E(Y;|py) = : 1y = 4 + tand t; = A + 7', then
T — 1= A, — A, Hence, the difference 4, — /1’ has to be the same real
number for each i€ 1, which allows to define o = A — AL

Note 9: In terms of Suppes and Zinnes (1963), Definition 2.1 and Theo-
rems 2.2 and 2.4 deal with a derived difference scale in the narrow sense.
Let ¢,,i = 1,..., m, be the factorizations (see Bauer, 1978, p. 300) of the
conditional expectatlons E(Y;|py), i€, qo (u): = E(Y,|py = u). Further-
more, define the numerical functions @¥* : U x {Y,, ..., Y,} = R, by

e¥(u, Yy = @;(u), iel,
define the function ¢*: U x {Y,, ..., Y,} = R, by

e*(u, Y = @(u), 1el,
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(see Eq. 16), and define the function A*: U x {Y,,...,Y,} - R. by
Au,Y): =
The derived measurement system can then be written
B=Ux{Y,..., Y.}, 0% .., 0%,
The representing relations are given by
Pr(uY)) = <p*<u, Y) AW Y) = ) + 4. iel.

(see Eq. 16) and (@*, A*): U x {Y,, .., Y.} o R x Ris a derived numer-

ical assignment (see Suppes & Zinnes, 1963, p. 18).

Note 10 1f lhe variables Y, ..., Y,, are nonnegative, then Equation 27 is
equivalent with

EY o Yalpy) =E(Y Ipy) .. E(Yalpy)., meN.
(see, e.g., Bauer, 1978, p. 298). If the variables Y,,.... Y, arc dichoto-

mous with values 0 and 1, then P(Y; = 1|py) = E(Y;| py)- I this case. the
equation above — and therefore also Equation 27 — define conditional (or
“local”) stochastic independence. Hence, the only difference between the
Rasc_h‘model and the model of essentially t-equivalent variables with
conditional regressive independence is that Equation 13 is replaced by
Equation 65.

Nole.ll ( Proof of Theorem 2.7): Equation 28 follows from the fact that
a residual ¢ = Yi'— E(Y;[py) is uncorrelated with every numcrical py-
measurable function (see Eq. 9). Using Theorem 2.2, we get
Cov(Y,, Y;) = Cov({4; + t + ¢, At T+ )
= Var(r) + Cov(g. ¢)),

which is Equation 28 (note that 4; is a constant). Noncorrelation of the
error variables (Eq. 30) follows from Equation 27, becausc

Covie;, ¢)) = Cov(Y; —E(Y;Ipus Yis o Yoo, Yisrs oo You)
Y, — E(Y,1po).

This equation shows that g; is a function which is measurable with
respect to (Y;, py). However, YJ and py are regressors with respect to
wh}ch g is a residual. Hence again the general theorem applics that a
residual i1s uncorrelated with every numerical function of its regressors.

Note 12 (Prf)ofofCorallary 2.8): Equation 32 is Equation 28 rewritten for
1 # J. Equation 33 follows from Theorem 2.2, Equation 11, and the well-
known rules of computation for covariances.
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Note 13 ( Proof 0/ Theorem 2.10) :
(i) Because .# is a model of essentially t-equivalent variables and the
' indicator I (see Eq. 36) is a py-measurable function:

E(Y,|py) = E(Yilpys lgn) = 4 + 1 (P —as), iel.
This equation implies that for 1€l
EMV(Y Ipy): = B, = Yilpo) = E(Yilpy, Lo =1)
= .+ 1 (P —as)
is a conditional expectation with respect Lo the conditional probabil-
ity measure P, The constants /; and also the 2-measurable func-

tion - Q » R dm unchanged when passing from the probability
measure P to P!

(i)  We have to show that Equation 27 implies:
DYl Yoo Y Y, Ya) = = E"(Yilpy) (P —~us).
This implication may be derived as follows:

DY pesYis oo Yo Yiggs oo Yo
L= El““,:l(YilpU*YI Y Y Y

=EYIpo. Yo o Yie s Yt oo Yoo lon = 1)
= BOY P Yoo Yo Yie e oo Yoo Tom)

= EY, Py Yioeon Yo Yiers o0 Yo

= E(Y;lpv)

= E(Y;Ipy lon)
= E(Ylpy, lo = 1)
= Elg“,ZI(YilpU)
: = EN(Y;|py) (P —as).
Note 14 ( Proof of Corollary 2.11):

(i) The proposition that .#" and .4 are models of essentially -
equivalent variables is an immediate implication of Theorem 2.10.
Equations 38 and 39 can be derived as follows:

ED(Y) = ED() + 4 and E@(Y)=E? @)+ 4, ieR,
and :
ED(Y) =EM() + 4; and E®P(Y)=E®()+ 4, jeR,
imply:
EO(Y) — EO(Y,) = 4 — 4 and EP(Y) = EQ(Y) =14 — 4,

where 1, j € I. However, these equations imply Equations 38 and 39.

(ii)  This is an immediate consequence of Theorem 2.10.
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Note 15 Each item has four categories. The instruction was to rate how
he or she feels right now. The item numbers refer to the following list: (1)
Ich bin entspannt. (2) Ich bin nervés. (3) Ich bin bekiimmert. (4) Ich fiihle
mich wohl. (5) Ich bin aufgeregt. (6) Ich bin beunruhigt. (7) Ich fiihle mich
ausgeruht. (8) Ich bin besorgt, daf3 etwas schief gehen konnte. (9) Ich bin
zufrieden. (10) Ich bin zappelig. (11) Ich fihle mich selbstsicher. (12) Ich
fithle mich angespannt. (13) Ich bin ruhig. (14) Ich bin gelost. (15) Ich
fithle mich geborgen. (16) Ich bin verkrampft. (17) Ich bin froh. (18) Ich
bin besorgt. (19) Ich bin liberreizt. (20) Ich bin vergniigt. These items were
embedded in a larger questionnaire.

Note 16 (Proof of Theorem 4.2): Condition 4.1 (d) implies 4.2 (d): If we
define, for instance, t: = E(Y,{py), 4io: = 4i10, and 4,1 = 4;;,, then
Equations 41 and 42 are easily seen to be equivalent. Similarly, if
Fquation 42 holds, then Equation 41 follows with 4;;: = 4, — 4;, and
/1J1 = /11 ))1

Note that Conditions 4.1 (d) and 4.2 (d') are both equivalent to:

(d") there exist a numerical random variable = on (£, ¥, P) and real
numbers 4y, 4,; € R, 4;; > 0, such that

Y= Ao + Ay T+ g, (66)
where ¢;: =Y, — E(Y;{py), foreach iel.
They arc also equivalent to:

(d") There exist a function @: Q — R and rcal numbers 4y, 4, € R, ,,
> 0, such that

=) = 4, + A, o), foreach iel. (67)

Note 17 { Proof of Theorem 4.4): The first part of this theorem is trivial.
In the second part, the assumptions imply

E(Yilpy) = 4o + Ayt =4 — Aiy 7, i€el. (68)

L (e — Ao\ . [y

“( 7 >+</1;1> '
. Aio — Ao _ Aig
o= (P 5)0- ()

Note that f is a positive real number, which proves Equations 43 and 45.
Inserting o and f in Aj; = 4,0 — (4,0 — Ao) results in Ay = A, — A, - o/P.
This proves Equation 44,

Hence,

and
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Note 18 ( Proof of Theorem 4.7) : The proof follows the same line of argu-
ment as that of Theorem 2.7. Only Equation 55 is different. However,
using Equations 29 and 30, it follows from Equation 66 and the well-
known rules of computation for covariances.

Note 19 ( Proof of Theorem 4.8) - Equations 58 to 59 immediately follow
from Equation 55. Observe that the covariances are positive following
from Theorem 4.2 and Definition 4.6.

Note 20 ( Proof of Theorem 4.10) : The proof follows exdctly the same line
of argument as in Note 13. Simply replace 4, + 1 by fio + A T

Note 21 ( Proof of Corollary 4.11) : This corollary is an immediate conse-
quence of Theorem 4.10.

Note 22: Suppose the variables were dichotomous, essentially t-equiva-
lent, but not parallel. Then there are at least two indices 1, j such that
PY; =11py) = P(Y; =1[py) + 4;,0 % 4; € RUIFP(Y; = 1]py = u) oc-
curs with a probability greater than zero and if it is such that the sum
P(Y; = 1|py = u) + 4;is greater than one, then the value of P(Y; = 1{py)
would be greater than one. This is a contradiction to the definition of
P(Y; = 1[py) to be a conditional probability. Such a contradiction does
not occur if the variables Y; are parallel or if P(Y, = 1 | py) takes on its
values in an adequately restricted range.



