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1 Introduction

In this text we present and explain the most important concepts, theorems, and

formulas of the theory of causal total effects in a somewhat simplified version. We

presume that there is only one single discrete treatment (or intervention) variable

X and that there is no fallible covariate of X . In this case, the observational-unit

variable (or person variable) U is a global potential confounder of X , and this global

potential confounder is discrete. The observational-unit variable being discrete

implies that all potential confounders of X are mappings of U (see Steyer & Nagel,

2017, Corollary 2.53). The general version of the theory of causal effects is presented

in Steyer, 2018, where you also find the definitions of the concepts ‘potential con-

founder of X ’, ‘covariate of X ’ and ‘global potential confounder of X ’.

The CEX is a learning tool that facilitates getting familiar with the theory. It allows

to study examples by specifying input parameters that fix the joint distribution of X

and U and the (X ,U )-conditional expectation of the outcome (or response) variable

Y . The CEX refers to a random experiment consisting of three subexperiments:

(a) Sampling a unit u from a set of units (persons). (Such a unit is a value of the

observational-unit variable U mentioned above.)

(b) Assigning or observing assignment of the unit to one of at least two treatments

represented by the values 0,1, . . . , J of the treatment variable X .

(c) Observing a value y of the outcome (response) variable Y .

Such a random experiment is the kind of empirical phenomenon that is repre-

sented by a probability space (Ω,A,P ), to which statements about probabilities,

expectations, variances, covariances, correlations, conditional expectations, and

causal effects refer. Hence, in the examples considered in the CEX, an element of

the set Ω of possible outcomes of such a random experiment is

ω = (u, treatment, response).

The observational unit-variable U then assigns to ω the value u, the observational

unit that is sampled. The treatment variable X assigns toωone of its values 0,1, . . ., J ,

depending only on its second component, the treatment. Similarly, the outcome

variable Y assigns to ω one of its values, depending only on its third component

(the response).

Once the input parameters are fixed by the user, the program computes all im-

portant parameters, including conditional (see section 4.4) and average causal total

effects (see section 4.2) of the treatment variable, and it also checks various causal-

ity conditions (see section 6). Furthermore, the CEX can also be used to generate

a data sample from the distribution that is specified by the input parameters. For

most purposes, the options of the program are self-explanatory. Clicking on the
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table, opens specific menues, which again are self-explanatory. Just try and play!

For the more complete and general theory of causal effects see Steyer, 2018 (in the

sequel, abbreviated by RS), and for the probability theory terms see Steyer & Nagel,

2017 (in the sequel, abbreviated by SN).

2 Basic concepts and assumptions

2.1 Observational-unit (person) variable U

The observational-unit (or person) variable is denoted by U . This random variable

takes on the values u1, . . . ,uN , where N ≥ 1 is the number of units in the set of units

(the “population”) from which one unit is drawn (see section 2). This number can

be specified by a right click on a unit ui in the first column of the table. This opens

a menue containing the options “Insert new unit before ui ” and “Insert new unit

after ui ”.

2.2 Sampling probabilities P (U=ui )

The first part of the random experiment considered (see section 1) consists of sam-

pling a unit ui from a set of N units. We assume that all these sampling probabilities

P (U=ui ) are positive, that is,

P (U=ui ) > 0, for all ui ∈ΩU = {u1, . . . ,uN }. (1)

These probabilities may be called sampling probabilities. They have to be specified

by the user. The sum of these sampling probabilities P (U=ui ) over all units must

be equal to 1. These probabilities need not necessarily be identical for all units.

2.3 Treatment variable X

We assume that the treatment variable X is discrete with values x = 0,1, . . . , J , where

J ≥ 2. Each of these values must have a positive probability, that is, we assume

P (X=x) > 0, for all x = 0,1, . . . , J . (2)

The probabilities P (X=x) are specified indirectly when the user specifies the indi-

vidual treatment probabilities P (X=x|U=u) (see section 2.4).

2.4 Individual treatment probabilities

The (U=u)-conditional probabilities

P (X=x|U=u) =
P (X=x,U=u)

P (U=u)
(3)
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are also called the individual treatment probabilities. They have to be specified by

the user. For simplicity, we assume

P (X=x|U=u) > 0, for all (x,u) (4)

in this introduction.

Note that

P (X=0|U=u) = 1−
J

∑

x=1

P (X=x|U=u). (5)

Hence, the user only has to specify the conditional probabilities P (X=x|U=u) for

x = 1, . . . , J and all units u. This allows the CEX to compute the conditional proba-

bilities P (X=0|U=u) for all units.

If, for example, the conditional probabilities P (X=x|U=u) are specified such that

P (X=x|U=u) = P (X=x), for all (x,u), (6)

then this corresponds to an experiment with randomized assignment of the unit to

one of the treatment conditions. In other words, in a randomized experiment, the

probability of being assigned to treatment x is identical for all units, and this applies

to all treatments. However, treatment probabilities may differ between treatments,

that is, P (X=x) may differ from P (X=x ′) for different treatments x and x ′. If Equa-

tion (6) does not hold, then at least one of the treatment probabilities depends on

the units and one or more of their attributes, such as their severity of symptoms,

and this may induce bias. This bias is also computed by the CEX (see section 5.2).

2.5 Covariate Z

In the CEX we can also consider a covariate of X , which is denoted by Z . In the CEX,

we presume that Z is a mapping of U so that it can be written as the composition

f (U ) of U and a mapping f . This implies that each observational unit has one and

only one value z of Z and that several units can share the same value z of Z . A

simple example of such a covariate Z is sex.

If no covariate is desired, then the corresponding column should be filled with a

fixed constant, for example, the constant 1. Because we assume that Z = f (U ) is a

mapping of U , the assumption P (U=u) > 0, for all u, implies

P (Z=z) > 0, for all values z of Z (7)

(see section 2.5). For the same reason, specifying the probabilities P (U=u) for all

units, the user indirecty specify the probabilities P (Z=z) for all values of the covari-

ate Z , because

P (Z=z) =
∑

u: f (u)=z

P (U=u), (8)
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that is, because the probability P (Z=z) is the sum of the probabilities P (U=u) over

all values u of U for which Z = f (U ) takes on the value f (u) = z.

2.6 Outcome (response) variable Y

The outcome (or response) variable is denoted by Y . It has to be real-valued with

finite expectation and finite variance. It can be continuous, discrete, or even binary

with values 0 and 1. Under the assumption (4), a conditional expectation value

E(Y |X=x,U=u) is uniquely defined by

E(Y |X=x,U=u) :=

∫

Y d P X=x,U=u (9)

(see SN-Def. 9.2), where P X=x,U=u denotes the (X=x,U=u)-conditional probability

measure P X=x,U=u : A → [0,1] defined by

P X=x,U=u(A) = P (A|X=x,U=u), for all A ∈A . (10)

If Y is discrete and the assumption (4) holds, then Equation (9) simplifies to

E(Y |X=x,U=u) =
∑

y

y ·P (Y =y |X=x,U=u). (11)

Hence, if Y is binary with y = 0,1, then

E(Y |X=x,U=u) = P (Y =1|X=x,U=u). (12)

In the CEX, the conditional expectation values E(Y |X=x,U=u) have to be speci-

fied by the user for all pairs of values of X and U (see section 2.7). Neither the values

y of Y nor the (X=x,U=u)-conditional distributions of Y need to be known or even

be specified. In contrast to Rubin, we do not assume that the values of Y itself are

fixed for a given pair (x,u) of values of X and U . Instead, only the conditional ex-

pectation values E(Y |X=x,U=u) are fixed (and have to specified in the CEX). In this

respect, the theory of causal effects is a generalization of Rubin’s ‘potential outcome

approach’ to causality (see, e.g., Rubin, 2005).

2.7 True-outcome variables

Let E(Y |X ,U ) denote the (X ,U )-conditional expectation of Y in the single-unit trial

described in section 1. The definition and the properties of such a conditional ex-

pectation are provided in SN-chapters 9, 10, and 11. In the theory of causal effects,

the conditional expectation value E(Y |X=x,U=u) is called the true outcome of unit

u given treatment x.
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For x = 0,1, . . . , J , we define the partial (X=x,U )-conditional expectation of Y by

E(Y |X=x,U )(ω) = E(Y |X=x,U=u), if ω ∈ {U=u}, (13)

where {U=u} = {ω ∈Ω : U (ω) = u} denotes the event that unit u is sampled (see

again the random experiment described in section 1). Because X is fixed to one

of its values x, E(Y |X=x,U ) is a function of the observational-unit variable U . As-

suming P (X=x) > 0 implies

E(Y |X=x,U ) = E X=x(Y |U ), (14)

where E X=x(Y |U ) denotes the U -conditional expectation of Y with respect to the

conditional-probability measure P X=x : A → [0,1] defined by

P X=x(A) = P (A|X=x,U=u), for all A ∈A . (15)

For the general definition and the properties of such a partial conditional expecta-

tion E(Y |X=x,U ) see SN-chapter 14.)

Under the assumption (made in the CEX) that U is a global potential confounder,

the partial conditional expectation E(Y |X=x,U ) can now be used to define

τx := E(Y |X=x,U ), (16)

the true-outcome variable of Y given treatment x, x = 0,1, . . . , J . These true-outcome

variables replace the potential outcome variables used in Rubin’s approach. Ac-

cording to Equations (13) and (16), the values of the true-outcome variable τx are

the conditional expectation values E(Y |X=x,U=u). More precisely, for all values x

of X ,

τx(ω) = E(Y |X=x,U )(ω) = E(Y |X=x,U=u), if ω ∈ {U=u}. (17)

If Y is a binary outcome variable, then its true-outcome variable τx is also the

partial (X=x,U )-conditional probability of the event {Y =1} (see SN-Remark 14.30),

that is, if Y is binary, then, for x = 0,1, . . . , J ,

τx = P (Y =1|X=x,U ), (18)

and Equation (17) can also be written as

τx(ω) = P (Y =1|X=x,U )(ω) = P (Y =1|X=x,U=u), if ω ∈ {U=u}. (19)

2.8 Individual total effects

The difference

E(Y |X=x,U=u) − E(Y |X=0,U=u)
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between the true outcomes under treatment x and under treatment 0 for the same

observational unit u is called the individual total effect of treatment x compared to

treatment 0 of unit u. These individual effects are the values of the random variable

δx0 := τx −τ0 (20)

More precisely, for all x, x 6= 0,

δx0(ω) = E(Y |X=x,U=u) − E(Y |X=0,U=u), if ω ∈ {U=u}. (21)

The individual total effects are computed by the CEX, once the user has specified

the true outcomes for all treatments and all units. They can be inspected on the

main screen of the CEX, the same screen on which the user specifies the individual

true outcomes.

2.9 Conditional probabilities P (U=u|X=x)

The conditional probabilities

P (U=u|X=x) =
P (X=x|U=u) ·P (U=u)

P (X=x)
(22)

are computed by the CEX from the individual treatment probabilities P (X=x|U=u)

and the sampling probabilities P (U=u), both of which are specified by the user.

These probabilities are also shown on the main screen.

The conditional probabilities P (U=u|X=x) may be called sampling probabilities

given treatment x. If they do not depend on x, that is, if

P (U=u|X=x) = P (U=u), for all (x,u), (23)

then there is representative sampling in each treatment condition x. Equation (23)

implies that the distributions of all attributes of the units, that is, of all covariates

Z = f (U ) (i.e., of all mappings of U ) are identical between treatment conditions. In

this sense, the treatments are ‘comparable’. In other words, if Equation (23) holds,

then we can compare the conditional expectation values E(Y |X=x) and E(Y |X=x ′)

to each other in order make causal inferences, and the same applies to the condi-

tional expectation values E(Y |X=x, Z=z) and E(Y |X=x ′, Z=z).

2.10 Summary of all assumptions made in the CEX

For convenience, now we summarize all assumptions made in the CEX.

(i) The number N of units in the set ΩU = {u1, . . . ,uN } of units, from which one

unit is sampled, is greater than or equal to 1, and each unit u in this set of

units has a positive probability P (U=u) > 0 to be drawn.
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(ii) The number J +1 of treatment conditions is greater than or equal to 2.

(iii) The covariate Z is a mapping of U , that is, there is a mapping f such that

Z = f (U ). In more precise terms, this means that Z is a composite mapping

of U and a mapping f that assigns to each observational unit u a value f (u)

in the co-domain of Z . This co-domain does not have to be a subset of the

real numbers. The covariate sex with values male and female is an example in

case.

(iv) The outcome variable Y is assumed to be real-valued with finite expectation

and variance. It can be continuous, discrete, or even binary with values 0 and

1.

(v) The joint probabilities P (X=x,U=u) are positive for all pairs (x,u) of values of

X and U .

Note that the assumptions in the general theory of causal effects are less restric-

tive. However, the assumptions (i) to (v) are made in the CEX.

3 Unbiasedness of conditional expectations and

their values

3.1 Unbiasedness of E (Y |X )

Let the assumptions specified in section 2.10 hold. Then:

(i) The conditional expectation value E(Y |X=x) is called unbiased if

E(Y |X=x) = E(τx) = E
(

E(Y |X=x,U )
)

. (24)

(ii) The conditional expectation E(Y |X ) is called unbiased (with respect to U ) if

Equation (24) holds for all x = 0,1, . . . , J .

3.2 Unbiasedness of E (Y |X , Z )

Now we extend the concept of unbiasedness to conditioning on a covariate of X ,

that is, on a random variable that is a mapping of U .

Let the assumptions specified in section 2.10 hold and let Z be a random variable

such that there is a mapping f satisfying Z = f (U ).

(i) The partial conditional expectation E(Y |X=x, Z ) is called unbiased if

E(Y |X=x, Z ) = E(τx |Z ) = E
(

E(Y |X=x ,U )
∣

∣ Z
)

. (25)
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(ii) The partial conditional expectation E(Y |X , Z=z) is called unbiased if

E(Y |X=x , Z=z) = E(τx |Z=z) = E
(

E(Y |X=x,U )
∣

∣ Z=z
)

(26)

holds for all x = 0,1, . . . , J .

(iii) The conditional expectation E(Y |X , Z ) is called unbiased if Equation (25) holds

for all x = 0,1, . . . , J .

(iv) The conditional expectation value E(Y |X=x , Z=z) is called unbiased if

E(Y |X=x, Z=z) = E(τx |Z=z). (27)

In these definitions, remember that we are talking about bias with respect to total

effects, because U is global potential confounder only if we consider total-effects,

and not direct effects, for example. Second, in the definition of unbiasedness of

E(Y |X , Z ), it is important to know that we consider X to be the cause and Z the co-

variate of X , and in many cases the variables cannot change their roles. Remember

that X — and not Z = f (U ) — takes the role of a cause.

The CEX checks whether or not unbiasedness of E(Y |X , Z ) holds. If it holds, a

green check mark appears in the table of causality conditions on the main screen.

The CEX also checks if E(Y |X , Z=z) is unbiased. If yes, a green check mark appears

in the table of causality conditions on the screen for the (Z=z)-conditional effects.

4 Causal total effects

4.1 Expectation of a true-outcome variable

The true-outcome variable τx has been defined in Equation (16). Using Equation

(17) for the values of τx yields

E(τx) = E
(

E(Y |X=x ,U )
)

=
∑

u

E(Y |X=x,U=u) ·P (U=u). (28)

This expectation is identical to the conditional expectation value of Y given treat-

ment x in a randomized experiment, that is, in an experiment in which Equation (6)

holds. The expectation of τx is also identical to the conditional expectation value of

Y given treatment x for a representatively sampled observational unit, that is, for a

unit sampled in an experiment in which Equation (23) holds.

If Y is binary, then

E(τx) = E
(

P (Y =1|X=x,U )
)

=
∑

u

P (Y =1|X=x,U=u) ·P (U=u) (29)

10



is identical to the (X=x)-conditional probability of Y =1 that would be estimated in

a randomized experiment. In this sense, this number reveals the causally unbiased

expected outcome of Y given treatment x, which is useful if no information about

the observational unit is available.

4.2 Average causal total effect

Let τx = E(Y |X=x,U ), x ∈ {0,1, . . . , J }, denote the true-outcome variables given x

and assume P (X=x|U ), P (X =0|U ) > 0. Then

ATEx0 := E(τx −τ0) = E(τx)−E(τ0) (30)

is defined to be the average causal total effect of treatment x compared to treatment

0 on the (expectation of the) outcome variable Y .

Note that

ATEx0 =
∑

u

(

E(Y |X=x,U=u) − E(Y |X=0,U=u)
)

· P (U=u). (31)

This equation can be used for the computation of the ATEx0 from the true outcomes

for all pairs of units and treatment x, which the user has to specify in the CEX.

4.3 Identification of the average total treatment effect

If E(Y |X=x, Z ) and E(Y |X =0, Z ) are unbiased, then

E
(

E(Y |X=x , Z )
)

−E
(

E(Y |X =0, Z )
)

= E
(

E(τx |Z )
)

−E
(

E(τ0 |Z )
)

[Eq. (25)]

= E(τx)−E(τ0) [SN-Box 10.2 (iv)]

= ATEx0.

(32)

Hence, the average causal total effect of x compared to 0 can be identified (com-

puted) from the expectations E
(

E(Y |X=x, Z )
)

and E
(

E(Y |X =0, Z )
)

, provided that

E(Y |X=x, Z ) and E(Y |X =0, Z ) are unbiased. Note that these partial conditional

expectations and their expectations can be estimated in a data sample of (X ,Y , Z ).

4.4 Conditional expectation value of a true-outcome

variable

Let the assumptions of section 2.10 hold and assume that V = f (U ) is a covariate of

X . Then the following equation holds for the (V =v)-conditional expectation value

of a true-outcome variable τx:

E(τx |V =v) = E
(

E(Y |X=x,U )
∣

∣V =v
)

=
∑

u

E(Y |X=x,U=u) ·P (U=u|V =v). (33)
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Such a conditional expectation value is also called the causally unbiased (V =v)-

conditional expectation value of Y in treatment x. The conditional expectation

value E(τx|V =v) is identical to the expectation of the outcome Y under treatment x

for an observational unit with score v on the covariate V in an experiment in which

P (X=x|U ) = P (X=x|V ), for all x, (34)

holds. Because we assume V = f (U ), we can write P (X=x|U ) = P (X=x|U ,V ). This

implies

P (X=x|U ,V ) = P (X=x|V ), for all x, (35)

and this equation is equivalent to V -conditional independence of X and U . Hence,

E(τx|V =v) is identical to the expectation of Y given treatment x, which would be

estimated in a V -conditionally randomized experiment, that is, in an experiment

in which Equation (35) holds. In still other words, E(τx |V =v) reveals the causally

unbiased expected outcome of Y under treatment x given the value v = f (u) of the

covariate V for an observational unit u.

Again, if Y is binary, then

E(τx |V =v) = E
(

P (Y =1|X=x,U )
∣

∣V =v
)

=
∑

u

P (Y =1|X=x,U=u) ·P (U=u|V =v). (36)

In this case, E(τx |V =v) is identical to the (X=x,V =v)-conditional probability of

Y =1 that would be estimated in a V -conditionally randomized experiment, that

is, in a experiment, in which Equation (35) holds. Hence, E(τx |V =v) reveals the

causally unbiased probability of Y =1 given V =v and treatment X=x if no other in-

formation than v about the observational unit is available.

4.5 Conditional causal total effect

Now we turn to the definition of a conditional causal total effect. In this definition,

we refer to a mapping Z of U with respect to which we assume unbiasedness. Addi-

tionally, we refer to a mapping V of Z — which therefore is also a mapping of U —

with respect to which we define a conditional effect. Because V can also be identi-

cal to Z we only need a single definition in order to define a conditional total effect

for any mapping of Z , including Z itself.

Let the assumption of section 2.10 hold and assume that V is a function of U .

Then the conditional causal (total) effect of the treatment x compared to treatment

0 on the outcome variable Y given the value v of a covariate V of X is defined by

CTEV ;x0(v) := E(τx |V =v)−E(τ0 |V =v). (37)
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This equation defines the (V =v)-the conditional causal total effect. Equation (38)

shows how the conditional causal total effect can be identified from empirically

estimable parameters.

Let the assumption of section 2.10 hold and assume:

(a) Z is a mapping of U

(b) V is a mapping of Z

(c) E(Y |X=x, Z ) and E(Y |X =0, Z ) are unbiased.

(d) P (V =v) > 0.

Then the conditional causal total effect CTEV ;x0(v) can identified as follows:

CTEV ;x0(v) := E
(

E(Y |X=x, Z )
∣

∣V =v
)

−E
(

E(Y |X =0, Z )
∣

∣V =v
)

. (38)

Hence, if E(Y |X=x, Z ) and E(Y |X =0, Z ) are unbiased and V is a mapping of Z ,

then the (V =v)-conditional causal total effect of x compared to 0 can be com-

puted from the (V =v)-conditional expectation values E
(

E(Y |X=x , Z )
∣

∣V =v
)

and

E
(

E(Y |X =0, Z )
∣

∣V =v
)

. These values can be estimated in a data sample of (X ,Y , Z ).

(Remember, because V = f (Z ), the random variable V can be computed from Z .)

If V = Z , then Equation (38) simplifies to

CTEZ ;x0(z) = E
(

E(Y |X=x, Z )
∣

∣ Z=z) − E
(

E(Y |X =0, Z )
∣

∣ Z=z
)

= E(Y |X=x, Z=z) − E(Y |X=0, Z=z).
(39)

If Z is discrete, then

CTEV ;x0(v)

= E
(

E(Y |X=x, Z )
∣

∣V =v
)

− E
(

E(Y |X =0, Z )
∣

∣V =v
)

=
∑

z

E(Y |X=x, Z=z) ·P (Z=z|V =v) −
∑

z

E(Y |X=0, Z=z) ·P (Z=z|V =v)

=
∑

z

(

E(Y |X=x, Z=z)−E(Y |X=0, Z=z)
)

·P (Z=z|V =v).

(40)

Under the assumptions of summarized in section 2.10, the partial conditional ex-

pectations E(Y |X=x,U ) are always unbiased. Therefore, in the CEX the CTEV ;x0(v)

can be computed from the true outcomes by

CTEV ;x0(v) =
∑

u

(

E(Y |X=x,U=u) − E(Y |X=0,U=u)
)

·P (U=u|V =v). (41)
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4.6 Conditional expectation value of the outcome variable

In section 4.1 we showed how to compute the expectation of a true-outcome vari-

able τx and in section 4.4 we showed how to compute its (V =v)-conditional ex-

pectation value. Now we turn to the (X=x)-conditional expectation value of the

outcome variable Y itself, and show how E(Y |X=x) can also be computed from the

true outcomes. If P (X=x) > 0, then we define

E(Y |X=x) :=

∫

Y d P X=x. (42)

where P X=x denotes the (X=x)-conditional probability measure on A [see Eq. (15)].

If Y is discrete, then

E(Y |X=x) =
∑

y

y ·P (Y =y |X=x). (43)

However, E(Y |X=x) can also be computed from the true outcomes. The formula is

E(Y |X=x) =
∑

u

E(Y |X=x,U=u) ·P (U=u|X=x) (44)

[see SN-Box 9.2 (ii)]. If Y is binary, this equation can also be written

P (Y =1|X=x) =
∑

u

P (Y =1|X=x,U=u) ·P (U=u|X=x). (45)

It is worthwhile comparing Equations (28) and (44) to each other. This compari-

son reveals that E(Y |X=x) = E(τx), if

(a) P (U=u|X=x) = P (U=u), for all u,

or

(b) E(Y |X=x,U=u) = E(Y |X=x), for all u.

This is easily seen in the CEX if you specify the input parameters such that (a) or

(b) holds. A mathematical proof is also not difficult. Note, however, that in the CEX

condition (a) can be specified only indirectly via specifying

P (X=x|U=u) = P (X=x), for all u. (46)

The conditional probabilities

P (U=u|X=x) = P (X=x|U=u) ·
P (U=u)

P (X=x)
(47)

referred to in (a) are then computed by the CEX.

Each of the conditions (a) and (b) implies unbiasedness of E(Y |X=x) (see section

3.1). If (a) holds for all values x of X , then (a) is equivalent to independence of U

14



and X . In the CEX, condition (b) is called unit-treatment homogeneity, referring to

the fact that all units respond homogeneously (i.e., in the same way) to treatment

x with respect to the (expectation of the) outcome variable Y . Each of these con-

ditions is checked by the CEX. If they hold, then a green check mark appears in the

corresponding position in the table of causality conditions.

4.7 Conditional expectation value of the outcome variable

given a treatment and a value of the covariate

If P (X=x, Z=z) > 0, then we define the (X=x, Z=z)-conditional expectation value

of a real-valued random variable Y by

E(Y |X=x, Z=z) :=

∫

Y d P X=x, Z=z, (48)

where P X=x, Z=z denotes the (X=x, Z=z)-conditional probability measure on A [see

Eq. (10)]. If Y is discrete, then its conditional expectation value given treatment x

and a value z of the covariate Z can be computed from the values y of Y and their

(X=x, Z=z)-conditional probabilities via

E(Y |X=x, Z=z) :=
∑

y

y ·P (Y =y |X=x, Z=z). (49)

Under the assumptions specified in section 2.10, these conditional expectation val-

ues can also be computed from the true outcomes of the observational units using

E(Y |X=x, Z=z) =
∑

u

E(Y |X=x,U=u) ·P (U=u|X=x, Z=z). (50)

This equation is a special case of SN-Box 9.2 (ii) for Z = f (U ), which implies

E(Y |X=x,U=u, Z=z) = E(Y |X=x,U=u). (51)

Again, it is worthwhile comparing Equations (33) and (50) to each other. This

comparison reveals that E(Y |X=x, Z=z) is unbiased if

(a) P (U=u|X=x, Z=z) = P (U=u|Z=z), for all u,

or

(b) E(Y |X=x,U=u) = E(Y |X=x, Z=z), for all u.

If condition (a) holds for all values x of X , then it is equivalent to (Z=z)-conditional

independence of U and X , and this conditional independence is checked by the

CEX, when checking the (Z=z)-conditional causality conditions.

In the CEX, condition (b) is also called (Z=z)-conditional unit-treatment homo-

geneity, referring to the fact that, given Z=z, all units respond homogeneously to

treatment x with respect to the (expectation of the) outcome variable Y . Other

causality conditions are treated in section 6.
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5 More on bias and unbiasedness

5.1 Unbiasedness of the (X=x)-conditional expectation

values of the outcome variable Y

As mentioned before, under the assumptions summarized in section 2.10, unbi-

asedness of the conditional expectation value E(Y |X=x) is defined by

E(Y |X=x) = E(τx), (52)

where τx = E(Y |X=x ,U ) is the partial (X=x ,U )-conditional expectation of Y (see

section 2.7). Once all necessary parameters are specified by the user, this condi-

tion is checked by the CEX. If it holds for all values x of X , then the conditional

expectation E(Y |X ) is also called unbiased and a green check mark appears in the

corresponding list of causality conditions.

Because

E(Y |X=x) = E(τx|X=x) (53)

is always true, the difference

E(τx) − E(τx |X=x) (54)

defines the bias of E(Y |X=x).

Unbiasedness in statistics usually refers to estimators of a parameter. However, if

the expectation

E
(

Y x

)

= E(Y |X=x)

of the sample mean in treatment x is not identical to the parameter to be estimated

— here, this is E(τx) — then E(Y |X=x) is also biased if we intend to make causal

inferences from E(Y |X=x) to E(τx).

5.2 Two kinds of bias of the prima facie effect

For the prima facie effect

PFEx0 = E(Y |X=x)−E(Y |X=0)

it can be shown that

PFEx0 = ATEx0 + baseline biasx0 + effect biasx0, for all x, (55)

where

baseline biasx0 := E(τ0|X=x)−E(τ0|X=0) (56)

and

effect biasx0 := E(δx0|X=x) − ATEx0. (57)
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5.2.1 Baseline bias

Reading Equation (56), note that a value of the true-outcome variable τ0 represents

a (usually unknown) attribute of the observational unit, namely the individual true

outcome E(Y |X=0,U=u) if unit u would receive treatment 0. Remember that we

refer to the random experiment described in section 1 that is to be conducted in

the future. Therefore, a value of the true-outcome variable τ0 is an attribute of the

observational unit just like sex of this unit is one of its attributes. Therefore, just

like the random variable sex, the random variable τ0 is a pre-treatment variable,

and the same applies to the other true-outcomes variables τx. They all are pre-

treatment variables whose values are specified for all treatment conditions. In more

formal terms, the true-outcomes variables τx are mappings of the observational-

unit variable U , they are not mappings of the treatment variable X . In terms of

measure theory, they are measurable with respect to U (see SN-chapter 2).

Now, if the conditional expectation value of τ0 given X=x would differ from its

conditional expectation value given X =0 [see Eq. (56)], then this would imply, for

example, that a unit u with a high score on τ0 would tend to be in treatment x

rather than in treatment 0, or vice versa. In other words, in this case there would be

a selection bias due to the unit’s pre-treatment attribute ‘true outcome in treatment

0’. If we call the true outcome in treatment 0 — which is the reference treatment,

and in some applications it might be the untreated control — the ‘baseline’, then

calling the first kind of bias ‘baseline bias’ seems justified.

5.2.2 Effect bias

Similarly, and for the same reasons that are mentioned for the baseline bias, a value

of the individual total effect variable δx0 = τx −τ0 represents a pretreatment at-

tribute of the observational unit u. If the conditional expectation value of δx0 given

treatment x would deviate from the average total effect ATEx0 [see Eq. (5.2.2)], this

would mean, for example, that those tending to have a high individual total effect of

treatment x compared to treatment 0 would tend to be in treatment x rather than in

treatment 0. In other words, in this case, there would be a selection bias due to the

total effect expected if the unit would receive treatment x. If units are assigned to

treatment x with a high probability, because one correctly expects a high individual

total effect for this unit — which is an important goal in medical, educational, and

psychological assessment — one would induce such a selection bias.

Note that, in contrast to the CEX examples, in empirical applications, it is neither

possible to discover bias nor to test unbiasedness directly. However, there are other

causality conditions that are sufficient conditions for unbiasedness and that can be

tested empirically (see section 6). Those causality conditions guide us in designing

and analyzing experiments and quasi-experiments.
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5.3 Bias of the conditional expectation value E (Y |X=x, Z=z)

Let x be a value of the treatment variable X and assume that z is a value of the

covariate Z of X such that P (X=x, Z=z) > 0. As mentioned before, unbiasedness of

E(Y |X=x, Z=z) is then defined by

E(Y |X=x, Z=z) = E(τx |Z=z). (58)

Again, once all necessary parameters are specified by the user, this condition is

checked by the CEX. If Equation (58) holds for all values x of X , then the partial con-

ditional expectation E(Y |Z=z, X ) is also called unbiased and a green check mark

appears in the corresponding list of causality conditions on the screen for the spe-

cific value z of Z that the user can select via the tabs ‘View’ and ‘Show table condi-

tionally on covariate’.

5.4 Two kinds of bias of the conditional prima facie effect

Let x and 0 be two values of X and assume that z is a value of the covariate Z of X

such that P (X=x, Z=z), P (X =0, Z=z) > 0. Then the (Z=z)-conditional prima facie

effect

PFEZ ;x0(z) = E(Y |X=x, Z=z)−E(Y |X=0, Z=z)

is uniquely defined, and it can be shown that

PFEZ ;x0(z) = CTEZ ;x0(z) + baseline biasx0(z) + effect biasx0(z) (59)

where

baseline biasx0(z) := E(τ0|X=x, Z=z)−E(τ0|X=0, Z=z) (60)

and

effect biasx0(z) := E(δx0|X=x, Z=z) − E(δx0|Z=z). (61)

If both biases are 0, then the (Z=z)-conditional prima facie effect is unbiased. The

easiest way to understand the two kinds of conditional biases is to remember that

z indicates a subset of observational units (a subpopulation) and to translate what

has been said about the unconditional biases to the conditional case.

The CEX computes both kinds of (Z=z)-conditional biases for each value z of

the covariate Z , and it shows a green check mark on the specific screen for z if

unbiasedness of PFEZ ;x0(z) holds for all values x of X .

5.5 (X=x∗)-conditional expectation value of the
true-outcome variable

Let x, x∗ be values of X such that P (U=u, X=x),P (U=u, X=x∗) > 0. Under the as-

sumptions of section 2.10, the (X=x∗)-conditional expectation value of the true-
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outcome variable τx can be computed by

E(τx |X=x∗) =
∑

u

E(Y |X=x,U=u) ·P (U=u|X=x∗). (62)

Remember that, for each value x of the treatment variable, τx is a function of the

observational-unit variable U . Each unit has a value on all true-outcome variables

τx, x = 0,1, . . . , J .

5.6 Treatment-conditional average effects

Let x,0, x∗ be values of X such that P (U=u, X=x),P (U=u, X=0),P (U=u, X=x∗) >

0. Then the conditional total effect of treatment x compared to treatment 0 given

treatment x∗ can be computed by:

CTEX ;x0(x∗) := E(δx0|X=x∗) = E(τx |X=x∗)−E(τ0|X=x∗)

=
∑

u

(

E(Y |X=x,U=u)−E(Y |X=0,U=u)
)

·P (U=u|X=x∗). (63)

If there are two treatment conditions X=1 and X=0, then, according to Equa-

tion (63), we may consider both, CTEX ;10(1), the conditional total effect given treat-

ment, and CTEX ;10(0) the conditional total effect given control. These effects are also

known as the ‘average total effect of the treated’ and the ‘average total effect of the

untreated’.

At first sight, these concepts seem strange. How can we talk about the average

total effect (of the treatment) for the untreated? However, remember again that we

are not talking about data that resulted from an experiment but about a random

experiment that is still to be conducted, that is, we look at the random experiment

from the prefactual perspective. Hence, we can talk about the individual total effect

although the individual is not (yet) treated, and even if it is never treated, just in

the same way as we can talk about the probability of flipping ‘heads’, even if the

coin is never flipped. The individual total effect is an attribute of the observational

unit even if the random experiment considered is never conducted. Similarly, the

conditional or unconditional expectation values of the individual total effects can

be considered even if the random experiment is never conducted. Hence, we may

interpret the conditional total effect CTEX ;10(0) of the untreated as their average

effect if they would be treated. After all, we prefer the term ‘conditional total effect

given control’ over ‘conditional total effect of the untreated’, because this term is

less prone to mixing up the pre- and postfactual (or counterfactual) perspectives.

The first line of Equation (63) shows that the (X=x∗)-conditional treatment ef-

fects given a treatment condition x∗ give more specific information than the (un-

conditional) average treatment effects, if the (X=x∗)-conditional expectation val-

ues of the individual true-outcome variables τx and τ0 — they are mappings of the

person variable U — depend on the treatment variable. If, however, E(τx |X )= E(τx)
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and E(τ0|X )= E(τ0), then the conditional average treatment effects given treatment

x∗ do not differ between the two different treatment conditions and are equal to the

(unconditional) average treatment effect, that is, CTEX ;10(0) = CTEX ;10(1) = ATE10.

This is the case, for instance, if U and X are stochastically independent, that is, in a

randomized experiment.

6 Causality conditions

Conditions that imply unbiasedness of conditional expectations such as E(Y |X ) or

E(Y |X , Z ) are called causality conditions. If they hold, then this implies that these

conditional expectations describe causal dependencies of Y on X and allow us to

make causal inferences about the causal total effects of X on Y .

6.1 Independence and conditional independence of X and

U

6.1.1 Independence of X and U

Under the assumptions summarized in section 2.10, the treatment variable X and

the observational-unit variable U are independent (abbreviated U ⊥⊥X ), if

P (X=x|U ) = P (X=x), for all x (64)

[see SN-Eqs. (5.24) and (16.29)]. And, under these assumptions, it can be shown

that Equation (64) implies unbiasedness of E(Y |X ) with respect to U . If U ⊥⊥X

holds, then the CEX writes a green check mark in the corresponding place in the

table the causality conditions.

The experimental perspective If Equation (64) holds, then the probability of

receiving treatment x does not depend on the observational units and their at-

tributes such as severity of symptoms, sex, educational status, etc.

Randomization Note that independence of X and U can be created by an ex-

perimenter via randomized assignment of the unit drawn to one of the treatment

conditions. In such a procedure, for example, a coin flip decides whether or not the

unit drawn receives treatment. [See step (b) in the random experiment described

in section 1.]

The sampling perspective Note that U ⊥⊥X also holds if

P (U=u |X ) = P (U=u), for all u, (65)

20



that is, if the probability of sampling unit u is identical between all treatment con-

ditions represented by X . If Equation (65) holds, then we may also say that there is

representative random sampling in each treatment condition, with sampling prob-

abilities that are identical between treatment conditions. In this sense, treatment

conditions are then comparable with respect to the conditional expectation values

E(Y |X=x).

Testability Note that, if W = f (U ) is a mapping of U , then Equation (64) implies

P (X=x|W ) = P (X=x), for all x. (66)

If this equation does not hold, then Equation (64) does not hold as well. In other

words, if, in an empirical application, we show that (66) does not hold, then (64) is

falsified. Hence, in this sense independence of U and X can be tested empirically

via testing independence of W and X , for example, using binary (if X is binary) or

multinomial logistic regression (if X has more than two values).

6.1.2 Conditional independence of X and U given Z

Under the assumptions summarized in section 2.10, the treatment variable X and

the observational-unit variable U are Z -conditionally (stochastically) independent

(abbreviated U ⊥⊥X |Z ), if

P (X=x|U , Z ) = P (X=x|Z ), for all x. (67)

And, under these assumptions, Equation (67) implies unbiasedness of E(Y |X , Z )

with respect to U .

The experimental perspective If Equation (67) holds, then the probability of

receiving treatment x only depends on the values of the covariate Z . Given a value

z of Z , it does not depend on other attributes of the observational units. In fact, if z

is a value of Z with P (Z=z) > 0, then Equation (67) implies

P (X=x|Z=z,U ) = P (X=x|Z=z), for all x. (68)

If Equation (68) holds, then the CEX writes a green check mark in the corresponding

place in the table of causality conditions on the specific screen for the value z of Z .

Conditional randomization Note that Z -conditional independence of X and

U can be created by an experimenter via Z -conditionally randomized assignment

of the unit drawn to one of the treatment conditions. For example, if Z represents

severity of symptoms, then the experimenter can assign a unit to treatment 1 with
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probability P (X=1|Z=z1) = 5/6, if z1 indicates severe symptoms, and with prob-

ability P (X=1|Z=z2) = 2/6, if z2 indicates low severity. In such a procedure, for

example, a die toss decides — and not any attribute of the unit other than its value

z = f (u) — whether or not the unit drawn receives treatment.

The sampling perspective Note that, under the assumptions specified in sec-

tion 2.10, U ⊥⊥X |Z is equivalent to

P (U=u |X , Z ) = P (U=u |Z ), for all u. (69)

If z is a value of Z with P (Z=z) > 0, then Equation (69) implies

P (U=u |Z=z, X ) = P (U=u |Z=z), for all u. (70)

Hence, the probability of sampling unit u is identical between all treatment condi-

tions represented by X , once we keep constant a value z of Z .

If Equation (70) holds, then we also say that there is representative random sam-

pling in each combination of treatment and the value z of the covariate, with iden-

tical (Z=z)-conditional sampling probabilities between treatment conditions, and

that, given Z=z, treatment conditions are comparable with respect to the condi-

tional expectation values E(Y |X=x, Z=z).

Testability If W = f (U ) is a mapping of U , then Equation (67) implies

P (X=x|Z ,W ) = P (X=x|Z ), for all x. (71)

If this equation does not hold, then Equation (67) does not hold as well. In this

sense, Z -conditional independence of U and X can be falsified in an empirical ap-

plication, for example, using binary (if X is binary) or multinomial logistic regres-

sion (if X has more than two values).

Covariate selection In observational studies, we can aim at selecting a (possi-

bly) multivariate covariate Z = (Z1, . . . , Zm) such that Equation (67) holds. In such

a selection process Equation (71) can play an important role, because if it does not

hold, then we can select another covariate — which may or may not include the

previous one — for which Equation (67) may hold.

6.1.3 Unit-treatment homogeneity

Under the assumptions summarized in section 2.10, the outcome variable Y is X -

conditionally mean independent from U (abbreviated Y ⊢U |X ), if

E(Y |X ,U ) = E(Y |X ). (72)
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If this equation holds, then the units are homogeneous in their response to the treat-

ments represented by X . It can be shown that Equation (72) implies unbiasedness

of E(Y |X ). On the screen for the complete table, the CEX indicates in the table of

causality conditions whether (green check mark) or not (red cross) Equation (72)

holds.

6.1.4 Conditional unit-treatment homogeneity given Z

Under the assumptions summarized in section 2.10, the outcome variable Y is

(X , Z )-conditionally mean independent from U (abbreviated Y ⊢U |X , Z ), if

E(Y |X , Z ,U ) = E(Y |X , Z ). (73)

Because we assume that Z is a mapping of U , this equation is equivalent to

E(Y |X ,U ) = E(Y |X , Z ). (74)

It can be shown that, if P (X=x|Z ) > 0 for all values x of X , then Equation (73) im-

plies unbiasedness of E(Y |X , Z ).

If P (Z=z) > 0, then Equation (73) implies

E(Y |X ,U , Z=z) = E(Y |X , Z=z). (75)

If this equation holds, then the units with value f (u) = z are homogeneous in their

response to the treatments represented by X . If it holds, then the CEX writes a green

check mark into the table of the causality conditions on the specific screen for the

value z of Z .

Testability If W = f (U ) is a mapping of U , then Equation (73) implies

E(Y |X , Z ,W ) = E(Y |X , Z ). (76)

If this equation does not hold, then Equation (73) does not hold as well. In this

sense, Z -conditional mean independence of Y from U can be falsified in an empir-

ical application, using well-known regression techniques.

Covariate selection In observational studies we can aim at selecting a (possi-

bly) multivariate covariate Z = (Z1, . . . , Zm) such that Equation (73) holds. In such a

selection process Equation (76) can play an important role. As already mentioned,

if Equation (76) does not hold, then Equation (73) does not hold and we can select

another covariate for which Equation (73) may hold.
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6.1.5 Independence of X and the true-outcome variables

Let τ := (τ0,τ1, . . . ,τJ ) be the multivariate random variable consisting of the true-

outcome variables τx = E(Y |X=x,U ), x = 0,1, . . . , J . Under the assumptions speci-

fied in section 2.10, the treatment variable X and τ are (stochastically) independent

(abbreviated τ⊥⊥X ), if

P (X=x |τ) = P (X=x), for all x. (77)

If this equation holds, then the treatment probabilities do not depend on the true-

outcome variables, which are specific functions of U . Because τ is a specific func-

tion of U , Equation (77) follows from U ⊥⊥X , that is, from Equation (64), but U ⊥⊥X

does not follow from τ⊥⊥X . It can be shown that Equation (77) implies unbiased-

ness of E(Y |X ). If τ⊥⊥X holds, then the CEX writes a green check mark into the

corresponding place of the table of causality conditions.

6.1.6 Conditional independence of X and true-outcome variables

Under the assumptions specified in section 2.10, the treatment variable X and τ are

Z -conditionally (stochastically) independent (abbreviated τ⊥⊥X |Z ), if

P (X=x |Z ,τ) = P (X=x |Z ), for all x. (78)

It can be shown that τ⊥⊥X |Z implies unbiasedness of E(Y |X , Z ). The conjunction

of Equation (78) and

P (X=x|Z ) > 0, for all x (79)

corresponds to strong ignorability in Rubin’s terminology (see Rosenbaum & Rubin,

1983). Note that Equation (79) follows from the assumptions specified in section

2.10.

If P (Z=z) > 0, then Equation (78) implies (Z=z)-conditional independence of X

and τ, which, under the assumptions specified in section 2.10, is equivalent to

P (X=x |Z=z,τ) = P (X=x |Z=z), for all x. (80)

This equation is abbreviated by τ⊥⊥X |Z=z. If it holds, then the CEX writes a green

check mark into the table of the causality conditions on the specific screen for the

value z of Z .

6.2 Mean independence of τ from X

Let τ := (τ0,τ1, . . . ,τJ ) denote the multidimensional random variable consisting of

the true-outcome variables τx = E(Y |X=x,U ). The true-outcome variables τx, x =

0,1, . . . , J , are called mean independent from X , if

E(τx |X ) = E(τx), for all x. (81)
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We abbreviate this equation by τ ⊢ X . If τ ⊢ X holds, then E(Y |X ) is unbiased with

respect to U . Note that τ ⊢ X follows from τ⊥⊥X , which itself follows from U ⊥⊥X .

If τ ⊢ X holds, then the CEX indicates this fact by a green check mark in the table

of the causality conditions.

6.3 Conditional mean independence of X and τ

Similarly, we define Z -conditional mean independence of the true-outcome vari-

ables τx, x = 0,1, . . . , J , from the treatment variable X by

E(τx |X , Z ) = E(τx |Z ), for all x. (82)

We abbreviate this equation by τ ⊢ X |Z . If τ ⊢ X |Z holds, then E(Y |X , Z ) is unbi-

ased with respect to U . Note that τ ⊢ X |Z follows from τ⊥⊥X |Z , which itself follows

from U ⊥⊥X |Z .

If P (Z=z) > 0, then Equation (82) implies

E(τx|X , Z=z) = E(τx |Z=z), for all x. (83)

This equation is abbreviated by τ ⊢ X |Z=z. If τ ⊢ X |Z=z holds, then the CEX writes

a green check mark into the table of the causality conditions on the specific screen

for the value z of Z .

6.4 Unconfoundedness of E (Y |X )

Under the assumptions of section 2.10, the conditional expectation E(Y |X ) is called

unconfounded if, for all values x of X , at least one of the following two conditions

holds:

(a) P (X=x |U ) = P (X=x).

(b) E(Y |X=x,U ) = E(Y |X=x).

This condition also implies unbiasedness of E(Y |X ) with respect to U .

This condition is checked by the CEX, and if it holds, then this is indicated by a

green check mark in the table of the causality conditions for E(Y |X ). Note that, if

X is binary and (a) holds for x=1, then it also holds for x=0 (see Remark 5.46 of

SN). If X is binary, then this implies that U ⊥⊥X and unconfoundedness of E(Y |X )

are equivalent. This equivalence does not hold anymore if X takes on at least three

different values, each one with a positive probability.
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6.5 Unconfoundedness of E (Y |X , Z )

The conditional expectation E(Y |X , Z ) is called unconfounded if, for all pairs (x, z)

of values of X and Z , at least one of the following two conditions holds:

(a) P (X=x |Z=z,U ) = P (X=x|Z=z).

(b) E(Y |X=x, Z=z,U ) = E(Y |X=x, Z=z).

This condition implies unbiasedness of E(Y |X , Z ) with respect to U .

If (a) or (b) holds for a specific value z of Z , then this is checked by the CEX and

the result is indicated on the specific screen for the value z of Z by a green check

mark in the table of the causality conditions.

Again note, that, if X is binary and (a) holds for the pair (z,1) of values of Z and

X , then it also holds for the pair (z,0) of values of these two random variables (see

again SN-Remark 5.46). Just like in the unconditional case, this equivalence does

not hold anymore if X takes on at least three different values, each one with a posi-

tive probability.

7 Conclusion

Under the assumptions summarized in section 2.10, conditional and average to-

tal effects of a treatment variable X on a response variable Y can be defined as a

specific parameter that exclusively depends on the joint distribution of X , Y , and

the observational-unit variable U . There is no need to refer to any manipulations,

any philosophical terms, or anything else that is not part of the random experiment

considered. There is also no need to assume that the response is fixed given an ob-

servational unit u and a treatment condition x as in the definition of Rubin’s poten-

tial outcome variables. Furthermore, there are several causality conditions, each of

which implies unbiasedness of the conditional expectations E(Y |X ) or E(Y |X , Z ),

and some of these causality conditions can be tested in empirical applications and

used in covariate selection. The CEX can be used to specify parameter constella-

tions under which one or more of these causality conditions hold or do not hold.
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