
The Process Explorer

An application for studying issues of causal e�ects in discrete-time and

continuous-time stochastic processes

Master thesis

Master of Science, Psychology

Institute of Psychology

Faculty of Social and Behavioural Sciences

Friedrich-Schiller-University Jena

submitted by

Julia Gantner

First Advisor: Prof. Dr. Rolf Steyer

Second Advisor: M. Sc. Andreas Neudecker

Julia Gantner

Matriculation Number: 145115

Wiesenstr. 12a

07749 Jena

July 9, 2018

Contents

Contents

1. A misused paradigm 1

2. Mediation models 2

2.1. The classical paradigm . 2

2.2. Causality in mediation models . 4

3. Discrete-time stochastic process models 7

3.1. Analysing discrete-time models . 8

3.2. Causality in discrete-time models . 11

4. Continuous-time stochastic process models 13

4.1. Analysing continuous-time models . 18

4.2. Modelling a treatment . 19

4.3. Causality in continuous-time models . 20

5. The app 22

5.1. Computation . 22

5.2. User interface . 23

6. Discussion 30

7. Appendix 32

1

Abstract

It is a classical experimental paradigm to manipulate manifest treatment conditions (X)

assumed to have an e�ect on a latent theoretical variable (η1) which in turn a�ects a

manifest or latent outcome variable (η2). With this paradigm researchers intend to test

the theory that η1 has a causal e�ect on η2. Therefore they estimate the direct e�ect

of X on η1 (manipulation check) and make the erroneous conclusion that a successful

manipulation check means a signi�cant e�ect of X on η2 can be interpreted as evidence

for their originally stated hypothesis that η1 a�ects η2. Even if the theoretical constructs

considered in a case like this can be represented in a model with only the three random

variables X, η1 and η2, a causal interpretation of the direct and indirect e�ects is only

possible under very special circumstances, as Mayer, Thoemmes, Rose, Steyer, and West

(2014) have shown.

Looking at substantive psychological theories in more detail, however, it seems that the

theoretical constructs can often not be de�ned as a single random variable (such as the

latent variable η). Rather they have to be conceptualised as stochastic processes with latent

variables ηit, t ∈ T . These stochastic processes might not even be time-discrete, as assumed

in cross-lagged panel models and multivariate autoregressive processes. Instead, for many

psychological constructs they have to be conceptualised as continuous-time processes. This

rises new questions about causality in discrete-time and continuous-time models, which can

be explored by the application presented in this thesis.

2

Zusammenfassung

Ein typisches Experimentalparadigma der sozialwissenschaftlichen Forschung besteht darin

einen vermuteten E�ekt eines latenten Konstruktes η1 auf ein anderes latentes Konstrukt

η2 zu untersuchen, indem η1 mit einem manifesten Treatment (X) manipuliert und der

Unterschied zwischen den Bedingungen in η2 gemessen wird. Häu�g wird dann der direkte

E�ekt von X auf η2 in einem sog. Manipulation Check untersucht. Fällt dieser positiv aus,

wird daraus der fehlerhafte Schluss gezogen ein signi�kanter E�ekt von X auf η2 sei ein

Beleg für die Theorie, dass η1 einen E�ekt auf η2 hat.

Selbst in einem Fall in dem es sinnvoll ist, derartige theoretische Konstrukte mit nur

drei Zufallsvariablen X, η1 und η2 zu repräsentieren, ist eine kausale Interpretation der

direkten und indirekten E�ekte nur unter sehr spezi�schen Voraussetzungen möglich, wie

Mayer et al. (2014) gezeigt haben. Ein genauerer Blick auf übliche psychologische Theo-

rien zeigt allerdings, dass die betrachteten theoretischen Kontrukte oft nicht als einzelne

Zufallsvariablen (wie die latente Variable η) de�niert werden können, sondern als stochasti-

sche Prozesse mit den latenten Variablen ηit, t ∈ T aufzufassen sind. Diese stochastischen

Prozesse müssen dabei nicht einmal zeitdiskret sein. Stattdessen müssen sie für viele psy-

chologische Konstrukte durch zeitkontinuierliche Prozesse charakterisiert werden. Diese

Überlegungen werfen neue Fragen bezüglich der Kausalität in zeitdiskreten und zeitkon-

tinuierlichen Modellen auf, die mit der hier vorgestellten Applikation exploriert werden

können.

3

1 A MISUSED PARADIGM

1. A misused paradigm

One of the most frequently asked questions in social sciences and psychology in particular

is the question of how a certain psychological construct (whatever this means) a�ects

(whatever that means) another construct. Almost any research question in psychology can

be rephrased as �How does variable X a�ect variable Y ?�. For example, there are a number

of researchers investigating how feelings of loneliness a�ect depressive mood (e.g. Alpass &

Neville, 2003). In this example, as in many other psychological examples, the constructs

in question are conceptualised as manifest or latent random variables, in our example the

latent variables η1 and η2 that refer to loneliness and depression respectively.

If researchers want to study their question with an experiment they usually come up with

a way to manipulate loneliness η1 in an experimental but not in a control condition and

then evaluate the di�erence in depression η2 between the two conditions. Since loneliness

cannot be manipulated directly, a manifest treatment (X) has to be thought of for the

manipulation. Cacioppo et al. (2006) for example treated their subjects with hypnosis to

manipulate their loneliness and subsequently measured depression. The usual procedure

in these paradigms is to administer the hypnosis in the experimental condition (X = 1)

but not in the control condition (X = 0), to do a manipulation check to con�rm X had

the desired e�ect on η1 and then interpret the di�erence in depression between conditions(
E(η2|X = 1)− E(η2|X = 0)

)
as the e�ect of loneliness on depression.

However, there are some issues with this method. Although the manipulation check has

enjoyed unbroken popularity for more than 20 years (see Fayant, Sigall, Lemonnier, Retsin,

& Alexopoulos, 2017) it is often presumed to be more powerful than it actually is. Sigall

and Mills (1998) argue that a manipulation check has no use in most applications because

it can neither prove nor rule out alternative explanations of the observed e�ect and thus

doesn't �improve construct validity�, no matter which result the manipulation check yields.

We would agree insofar as to say that in the above example, the approach relies on the false

conclusion that a successful manipulation check means that the di�erence in depression

must be due to di�erence in loneliness.

To see why this conclusion is not correct, consider the path diagram in Figure 1, where

1

2 MEDIATION MODELS

you can see that we are actually dealing with a mediation paradigm: The manipulation

check corresponds to path c in the �gure, the di�erence in depression E(η2|X = 1) −

E(η2|X = 0) corresponds to the total treatment e�ect that is path e. In the following

section we examine how these e�ects are related and how this model can be analysed in

terms of a classical mediation model as proposed by Baron and Kenny (1986).

Before we start though, please consider one note regarding all of the models to follow in

this thesis: As we are concerned with causality and the question how a misspeci�cation of

the structural model for analysis can lead to biased e�ects, we are always just considering

true e�ects and put no attention to estimation and measurement models. Therefore all of

the following path diagrams omit any measurement model or manifest indicators for the

latent variables. In fact, all the points we are about to make would hold for manifest and

latent variables equally.

2. Mediation models

2.1. The classical paradigm

X

η1

η2b

c d

X η2
e

1

Figure 1: Direct and indirect e�ects of X on the left hand side, total treatment e�ect on

η2 the right hand side.

The classical mediation model as proposed by Baron and Kenny (1986) more than thirty

years ago is still widely used and has so far been cited more than 70,000 times. It gives a

framework to analyse how the e�ect of one variable on another is mediated trough a third

variable, the so called mediator. In our example, the total e�ect e of the hypnosis (X)

on depression (η2) can stem from two di�erent 'routes': there can be a direct e�ect (b) of

2

2 MEDIATION MODELS

hypnosis on depression and there can be an indirect e�ect (c · d) trough loneliness. If we

assume linear relationships between the variables, the according conditional expectations

can be parametrised as:

E(η2|X) = a0 + e ·X (1)

E(η2|η1, X) = a1 + d · η1 + b ·X (2)

E(η1|X) = a2 + c ·X. (3)

We can show how these e�ects relate:

E(η2|X) = E
(
E(η2|X, η1)

∣∣∣X) (4)

= E(a1 + d · η1 + b ·X|X) (5)

= a1 + d · E(η1|X) + b ·X (6)

= a1 + d · (a2 + c ·X) + b ·X (7)

= (a1 + d · a2) + (b+ c · d)X (8)

= a0 + e ·X (9)

Which leaves us with the equation (also described by Baron & Kenny, 1986; Wright, 1934)

e = b+ c · d (10)

to describe the relation of direct and indirect e�ects in the mediation paradigm. To get

an understanding of what this equation implies it is easiest to consider two extreme cases:

In the �rst case there is no direct e�ect of X on η2, that is, b = 0. In this case, we get

e = c · d. In the second case there is no indirect e�ect of of X on η2, that is c · d = 0. In

this case we get e = b.

For our example these cases represent a situation where the entire e�ect of hypnosis on

depression is mediated through loneliness (case 1) and a situation where none of this e�ect

is mediated through loneliness (case 2). To reiterate, this means that the identical total

3

2 MEDIATION MODELS

e�ect e can occur in situation were loneliness is the only thing that leads to an e�ect of X

on η2 and in a situation were loneliness plays no role at all.

It is important to understand that in the example presented in Section 1 only the total

e�ect is evaluated and therefore there is no way for the researcher to know where on the

continuum between those extreme cases their model falls. Even the manipulation check

does not give any helpful information here since it only addresses the case in which c 6= 0,

which still does not preclude that d = 0, the e�ect of loneliness on depression the researcher

is actually interested in. The only way to examine an e�ect of loneliness on depression

would be to not only measure η1 for a manipulation check but to include this measure of

loneliness in a mediation analysis to get to the indirect e�ect the researcher is actually

interested in.

2.2. Causality in mediation models

While the application of a mediation analysis to our example would at �rst glance solve the

problem of which e�ect precisely we have to analyse, it does introduce some issues regarding

causality that have been pointed out by Steyer, Mayer, and Fiege (2014) and Mayer et al.

(2014). In our example we would assume that the assignment to treatment conditions

(X = 1 for hypnosis, X = 0 for no hypnosis) would be randomized. This satis�es the

causality condition CC1 from Steyer et al. (2014) of independence of the treatment variable

X from the (possibly multidimensional) global covariate CX : P (X=x|CX) = P (X=x)

for all values x of X, where CX represents any covariates that are prior or simultaneous

to X.

However, it is important to note that this causality condition only implies CX -unbiasedness

of E(η2|X), that is, unbiasedness of the total e�ect of X on η2. Mayer et al. (2014) have

shown that P (X=x|CX) = P (X=x) does not imply unbiasedness of E(η2|X, η1), that

is, unbiasedness of the direct and indirect e�ects of X on η2. We can show that ignoring

pretests pertaining to η1 and η2 (for notation we use η1pre and η2pre for pretests and η1

and η2 for posttests), can lead to strongly biased estimations of direct and indirect e�ects,

even if randomisation guarantees X is (unconditionally) independent of η1pre and η2pre,

4

2 MEDIATION MODELS

that is P (X=x|η1pre, η2pre) = P (X=x). Consider the following conditional expectations:

E(η2|X) = α0 + α1X

E(η2|X, η1pre, η2pre) = β0 + β1X + β2η1pre + β3η2pre

E(η2|X, η1) = γ0 + γ1X + γ2η1

E(η2|X, η1, η1pre, η2pre) = δ0 + δ1X + δ2η1 + δ3η1pre + δ4η2pre,

We can show that the total e�ect of X is the same, whether we include pretreatment

measures or not, because randomisation of the treatment guarantees independence of X

and η1pre and η2pre:

E(η2|X) = E
(
E(η2|X, η1pre, η2pre)

∣∣∣X)
= E(β0 + β1 ·X + β2 · η1pre + β3 · η2pre|X)

= β0 + β1 ·X + β2 · E(η1pre|X) + β3 · E(η2pre|X)

= β0 + β1 ·X + β2 · E(η1pre) + β3 · E(η2pre)

=
(
β0 + β2 · E(η1pre) + β3 · E(η2pre)

)
+ β1 ·X

= α0 + α1 ·X,

which means that α1 =β1.

This does however not work if we consider direct and indirect e�ects. Since we condition

on the mediating variable η1 here and, conditional on η1, X can be dependent on η1pre and

η2pre, this means that P (X=x|η1, η1pre, η2pre) 6= P (X=x|η1) for all values x of X.

E(η2|X, η1) = E
(
E(η2|X, η1, η1pre, η2pre)

∣∣∣X, η1

)
= E(δ0 + δ1 ·X + δ2 · η1 + δ3 · η1pre + δ4 · η2pre|X, η1)

= δ0 + δ1 · E(X|η1) + δ2 · E(η1|X) + δ3 · E(η1pre|X, η1) + δ4 · E(η2pre|X, η1)

6= γ0 + γ1X + γ2η1

5

2 MEDIATION MODELS

which means that γ1 6= δ1. This is plausible in intuitive terms if we look at Fig. 2:

Both η1pre and X are correlated with η1 because loneliness depends both on hypnosis and

previous loneliness. Although the (unconditional!) correlation of hypnosis and previous

loneliness (η1pre) is zero due to randomisation, the partial correlation Corr(X, eta1pre; η1)

is not zero as can be shown by a thought experiment: Posttreatment loneliness is likely to

be very high if pretreatment loneliness was high and the hypnosis induced more loneliness.

Posttreatment loneliness is likely to be very low if pretreatment loneliness was low and

hypnosis didn't induce more loneliness. This means that high values on X and η1pre imply

high values on η1 and low values on X and η1pre imply low values on η1.

η1

η2

X

η1pre

η2pre

c

a

b

1

Figure 2: Mediation model with pretreatment measures

In empirical applications this can of course be true for other variables that are prior to

the treatment too, but careful selection of pretreatment measures will often reduce most of

the bias that could stem from unobserved covariates, as has also been argued by Steiner,

Cook, Shadish, and Clark (2010). In our simple example, were there are no covariates but

the pretreatment measures, we will be able to identify the causal e�ect of loneliness (η1)

on depression (η2) as the coe�cient β2 in

E(η2|X, η1, η1pre, η2pre) = β0 + β1X + β2η1 + β3η1pre + β4η2pre.

Once we have acknowledged the fact that neither loneliness nor depression can be repre-

sented by single variables that occur only once, it is natural to admit that representing

them with only one pretreatment and one posttreatment measure still oversimpli�es mat-

6

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

ters when we look at how we imagine those constructs in our theory. The next section

therefore discusses how the exemplary scenario should rather be represented as a stochastic

process model.

3. Discrete-time stochastic process models

A stochastic process is de�ned as a family (ηt, t ∈ T) of random variables ηt, where t ∈ T

often indicates a time point. In the sequel we will also call these variables observations.

We start simple, considering a discrete-time stochastic process for our example, that is,

we assume there is a �nite sequence of random variables η1t and η2t representing states

of loneliness and depression over time. According to this line of thinking, depression and

loneliness exist before and after our experimental intervention and are likely to have some

kind of reciprocal interaction over time. Our hypnosis (X) then occurs once at some time

point tX and can a�ect the following states η1s and η2s, where s > tX . Note that as long

as we are talking about discrete-time models, the set T is countable.

Though there are a large number of possible process models in this kind of setting, we

will go for a rather simple version and con�ne our discussion to so called AR1-processes.

This is a short cut for autoregressive process of order 1 and describes a process where

each variable only depends on the immediately preceding variables but not on the prior

variables. If we look at one of these AR1-processes in isolation, we can write:

E(ηt|η1, . . . , ηt−1) = α0 + α1 · ηt−1 (11)

ζt = ηt − E(ηt|η1, . . . , ηt−1). (12)

ζ is the error term that is sometimes referred to as innovation. In our case we have two

AR1-processes that interact with each other, resulting in the process depicted in Figure

3. The highlighted variables are the variables of Figure 1, which are now embedded in the

stochastic process. In this process, depression at any point in time depends on previous

7

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

depression and previous loneliness:

E(η2t|η11, . . . , η1(t−1), η21, . . . , η2(t−1)) = β0 + β1 · η1(t−1) + β2 · η2(t−1) (13)

For all t posterior to the treatment we also have to include the intervention variable X,

resulting in:

E(η2t|η11, . . . , η1(t−1), η21, . . . , η2(t−1), X) = γ0 + γ1 · η1(t−1) + γ2 · η2(t−1) + γ3 ·X (14)

Of course processes can get much more complex than this. The variables could for

example have an e�ect on more than just the immediately following variable and the

conditional expectations don't have to be parametrisable as linear combinations of the

preceding variables. Nevertheless, this model allows us to examine some issues with the

interpretation of the e�ects we are measuring in our experiment.

η13

η23

η12

η22

η11

η21

η10

η20

X

1

Figure 3: Simple stochastic process with four time points

3.1. Analysing discrete-time models

There are di�erent ways to analyse these kinds of structural equation models (SEM). As

we mentioned before, processes can be latent or manifest. If they are manifest, we can

use multiple regression analysis to estimate the e�ects we are interested in. If we want to

construct them as latent processes, we have to use manifest variables and a measurement

8

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

model that de�nes the latent variables and use a program for SEM-modelling such as

the R package lavaan (Rosseel, 2012) or the statistical program Mplus (�MPLUS (Version

8).[Computer Software]�, 2012). Since this thesis is not concerned with the measurement

model or estimation, all diagrams only show the structural equations. The focus of this

thesis is on identi�cation and the misspeci�cation of the causal model. Hence, we simulate

data and analyse it with di�erent models to explore the bias if the model for analysis doesn't

match the generating (true) process. However, since we are interested in identi�cation

and not in estimation, we do not simulate empirical data. Instead, we will calculate

true regression coe�cients from true variance-covariance matrices of the variables in the

structural equation model (see Jöreskog & Sörbom, 1988):

η = α+ Bη + Γξ + ζ, (15)

An overview over all the symbols used in the following notation can be found in Table

1.The covariance matrix Σ(ξ,η) can be composed as:

Σ =

 Φ ΦΓ′(I−B′)−1(
ΦΓ′(I−B)−1

)′
(I−B)−1(ΓΦΓ′ + Ψ)(I−B′)−1

 (16)

9

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

Symbol Meaning Dimensions

η Vector of the endogenous variables nη × 1

ξ Vector of the exogenous variables nξ × 1

Φ Covariance matrix of the exogenous variables nξ × nξ

Ψ Covariance matrix of the residuals of the endogenous variables nη × nη

Γ E�ects of exogenous variables on endogenous variables nη × nξ

B E�ects of endogenous variables on each other nη × nη

I Identity matrix nη × nη

Table 1: Notation used for the true parameters in the structural equations

If we want to compute any regression coe�cients within this set of variables, we �rst have to

choose one outcome variable from the endogenous variables (η) and one or more regressors

from the exogenous variables (ξ) and endogenous variables (η). We call the outcome

variable Y and the (column-) vector containing the regressors X. For the highlighted

model in Figure 3 this is for example:

Y = η23

X =
(
X
η12

)
From the Σ-matrix we can extract the two matrices we need to compute the regression

coe�cients, namely ΣXX , the covariance matrix of X, and ΣXY , the covariance matrix

of X and Y . The formula to compute the true regression coe�cients in this regression

E(Y |X) = β0 + βX is then:

β0 = E(Y)− β′
(
E(x1)

...
E(xn)

)
= E(η23)− β′

(
E(X)
E(η12)

)
(17)

β = Σ−1
XXΣXY (18)

10

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

This procedure allows us to come up with any discrete-time model by specifying the true

e�ects and covariance structure and to explore how the choice of di�erent response variables

and di�erent regressors determines whether the calculated regression coe�cients match the

true e�ects or not, regardless of any issues concerning estimation.

3.2. Causality in discrete-time models

If we assume to have a discrete-time process as depicted in Figure 3 it makes sense to

look at what happens if we don't measure every occurrence of the ηit-processes for our

analysis. Even though it is not at all realistic for our speci�c example of depression and

loneliness, let us for the sake of the argument assume that the time interval between t

and t + 1 in Figure 3 is exactly 1 minute and let us consider a process without a treat-

ment variable. To represent this (true) process perfectly, we would need to measure it

exactly every minute, thereby capturing every single state of the ηit. If we then consider

E(η23|η10, η20, η11, η21, η12, η22, X), we would be sure all our e�ects are unbiased, because

we included all variables determining the conditional expectation of η23 in the analysis.

What this means in terms of causality is that we control for all possible confounders that

exist, that is, for the global covariate CX .

In many cases this is not necessary for all possible confounders. However, if the outcome

variable depends on unobserved covariates, the e�ects we observe may be biased. To over-

come this problem, we can for example try to �nd a (possibly multidimensional) variable

Zt that implies (CX , Zt)-unbiasedness of E(η23|X,Zt), by satisfying causality condition

CC2Z from Steyer et al. (2014), which is E(Y |X,CX) = E(Y |X,Zt).

The more crucial problem is though, that to measure the process exactly we would have

to be aware that the 'natural pulse' of this particular process is one minute. If for some

reason we were assuming it to be 2 or 3 minutes and timing our measurement accordingly

instead, we would end up observing total e�ects while believing that we are observing

direct e�ects.

This scenario is visualised in Figure 4: On the top we can see the direct e�ects in the

model, on the bottom we can see the total e�ects getting more and more biased with every

additional time point we skip. This can even get to the point were some of the e�ects

11

3 DISCRETE-TIME STOCHASTIC PROCESS MODELS

change sign. It is important to emphasize the relevance of this observation: If no one

knows the natural pulse of the system and two di�erent researchers do an experiment on

the exact same process but with di�erent time intervals between their measurements, they

can come to completely opposing conclusions about the e�ects, for example regarding the

question whether current loneliness depends positively or negatively on previous loneliness.

η13

η23

η12

η22

η11

η21

η10

η20

0.8 0.8 0.8

0.9 0.9 0.9

-0.6 -0.6 -0.6

0.5 0.5 0.5

η13

η23

η12

η22

η11

η21

η10

η20

0.34

0.51

-1.02

0.85

η13

η23

η12

η22

η11

η21

η10

η20

-0.238

-0.051

-1.122

0.935

1

Figure 4: Direct e�ects on top, total e�ects with lag 2 and and lag 3 below.

By now it has become clear that our example of loneliness and depression is not at all a good

example for a discrete-time stochastic process. If we are looking at adequate psychological

examples for discrete-time processes there don't seem to be a lot of realistic scenarios.

12

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

One we came up with is a situation where two subjects are communicating via computers

that send and receive messages with a certain pulse, where action and reaction of the

two subjects will occur exactly at the time when the message arrives and there is nothing

to react to in between two messages. For the vast majority of psychological applications

however, it is really hard to �gure out the natural pulse at which the processes occur and

that is because they are not discrete-time processes. Instead, they have to be conceptualised

as continuous-time processes.

4. Continuous-time stochastic process models

To �gure out why depression and loneliness (and most other psychological constructs for

that matter) have to be conceptualised as continuous-time processes, it is useful to review

the assumptions you would make when you claim they are discrete-time processes: De�ning

depression as a discrete-time process that assumes there is depression at time point t, there

is depression at t+ 1 and there is no depression in between those time points. Generalising

this principle to other a�ective and cognitive processes would mean to assume that there

are points in time were the individual is in some kind of a cognitive-a�ective vacuum, with

feelings of loneliness and depression turning on and o� at the pulse of the discrete-time

process.

That is of course not how we imagine things to happen. When we think about loneliness

and depression, we rather assume that we could measure it at any given point in time

and that even though it might not be possible from a technical perspective, we should

in theory be able to observe our constructs between any two time points, no matter how

close together these points are. This means that we think of two processes η1(t) and η2(t)

depending on t, where t is the value of a continuous variable T , representing the continuous

time line of reality.

Trying to extend our path diagram from the previous section for continuous-time leads

us to Figure 5. The fact that there still are discrete instances of ηi(t) is due to drawing

possibilities when actually there is an in�nite number of ηi(t) between any of those depicted

instances. What this diagram shows however, is that depression and loneliness go on as

13

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

η1(1)

η2(1)

η1(2)

η2(2)

η1(3)

η2(3)

η1(4)

η2(4)

η1(5)

η2(5)

η1(6)

η2(6)

η1(7)

η2(7)

η1(8)

η2(8)

Y11 Y13 Y17

Y21 Y23 Y27

1

Figure 5: A continuous-time process

a continuous stream and our observations Yit only take a snapshot of the situation at the

time when the measurement takes place.

A short version of this to depict only the structural model without any measurement

model is shown in Figure 6. Here, a and b represent the continuous-time auto e�ects and

c and d represent the continuous-time cross e�ects.

14

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

η1(t)

η2(t)

c d

a

b

1

Figure 6: A continuous-time process without manifest indicators

This kind of continuous-time process is often described in form of di�erential equation

models (see e.g. Voelkle, Oud, Davidov, & Schmidt, 2012; Deboeck & Preacher, 2015).

Di�erential equation models are models that contain at least one derivative that describes

the change in one variable (e.g., η1) with respect to another variable (e.g., T) in the form

of dη1(t)
dt which would describe the change in loneliness with respect to time. Models that

contain such expressions represent moment-to-moment changes in a system of variables.

Through integration these moment-to-moment changes can be accumulated to compute

the change in the system for a given time interval ∆ti. The equation used to describe a

di�erential equation model is:

dη(t) =
(
Aη(t) + b

)
dt+GdW (t), (19)

where η(t) is a column-vector of the processes (e.g., η(t) =
(
η1(t)
η2(t)

)
), A is the so called

drift matrix that describes the reciprocal dependencies of those processes, b is an intercept

vector that provides a constant �xed input to the processes, W (t) is the Wiener process

(also called Brownian motion) that is used to model the error term and G is a scaling

15

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

factor for scaling this error term. This equation describes the moment-to-moment changes

in our two processes contained in η(t). For our purposes the drift matrix is the most

interesting part of Equation 19 as it contains the information of how the processes depend

on themselves (auto-e�ects) and each other (cross-e�ects). For our example with the two

processes loneliness (η1(t)) and depression (η2(t)) this matrix takes the form of a two-by-

two matrix such as

A =

−0.5 0.3

0.2 −0.4

where −0.5 and −0.4 are the auto-e�ects that describe how a process depends itself and

0.3 and 0.2 are the cross-e�ects that describe how the processes depend on each other.

However, when we observe this process in real life we can only observe changes that

accumulated over some time interval ∆ti = ti − ti−1:

η(ti) = A(∆ti)η(ti −∆ti) +w(∆ti). (20)

In this notation, we use the index i for both t and ∆t, because it can denote the rank of

the (hypothetical) measurement occasion and the rank of the time interval between two

measurement occasions at the same time:

If we consider i = 0, . . . , N measurement occasions, there are exactly i = 1, . . . , N

intervals in between. Thus, ti denotes the (i+1)th measurement occasion and ∆ti denotes

the ith interval between measurements. t3 for example denotes the fourth measurement

occasion (because we start counting at 0), and the ∆t3 denotes the third interval, that is,

the interval between measurement occasions t2 and t3.

The matrix A(∆ti) describes the discrete autoregressive and cross-lag e�ects between

observations of the processes at time ti (η(ti)) and observations of the processes ∆ti ear-

lier (η(ti − ∆ti)). Stochastic integration reveals that the formula that relates the drift

parameters and their discrete e�ects observed for a given time interval ∆ti is:

16

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

A(∆ti) = eA·∆ti . (21)

According to Deboeck and Preacher (2015) and Driver and Voelkle (2017) we can learn

more about the interpretation of the drift parameters if we calculate the corresponding

discrete-time e�ects for di�erent hypothetical drift parameter constellations. The authors

show that if ∆ti is one, as we let the continuous-time auto e�ects approach zero, the

discrete-time autoregressive e�ects approach one and as the autoregressive e�ects approach

zero, the auto e�ects approach negative in�nity. This means that a negative continuous-

time auto e�ect represents a non-explosive process that � in the absence of any other

in�uences on the process � tends to approach to the baseline, because the negative sign

means that the more positive the latent state, the stronger is its negative in�uence on the

expected change of the process.

For the cross e�ects the situation is a bit more complicated as the discrete-time cross-lag

e�ects depend both on the auto e�ects and on the cross e�ects. However, one can say that

a positive cross e�ect for both processes means that as one of the processes gets more

positive, the expected change in the other process also becomes more positive.

To get a better feeling for how the drift parameters translate into discrete e�ects, we will

use our example matrix to compute the discrete e�ects for the time intervals ∆t1 = 1,

∆t2 = 3 and ∆t3 = 10:

17

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

A(1) = eA·1 =

0.625 0.193

0.129 0.690

A(3) = eA·3 =

0.293 0.256

0.171 0.378

A(10) = eA·10 =

0.055 0.081

0.054 0.082

The �rst thing we can see is that indeed a negative continuous-time auto e�ect translates

to positive discrete-time autoregressive e�ects and that positive continuous-time cross ef-

fects also translate to positive discrete-time cross-lag e�ects. Furthermore, what we can

see is that the discrete e�ects in this example get smaller, the greater the interval ∆ti

gets. The discrete e�ects will take di�erent values for any given time interval ∆ti, which

already points to what they have to be thought of: Since our processes are oscillating on

a continuous time scale, any e�ect we can actually observe will always be a total e�ect.

This is due to the fact that we cannot have two observations where there is nothing in

between, that is, we cannot have two discrete random variables representing the process

at two consecutive time points where there isn't another random variable representing the

state of the process in between those two. Instead we can only observe the total e�ects of

those processes in our time interval, which are essentially accumulating every interaction

that happened in between.

4.1. Analysing continuous-time models

Since we can only make discrete observations of the continuous process we need a way to

estimate the continuous parameters from those discrete observations. This is possible with

the R package ctsem by Driver, Oud, and Voelkle (2017). Their method of analysis takes

18

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

a data frame with discrete observations of the process and information about the time

interval between those observations and computes, amongst others, the drift matrix. To

help understand this kind of models better the package also has a data generating function

which takes a model speci�cation and a number of observations and simulates a data frame

with discrete observations of the process accordingly.

However, if we want to take a similar approach as we did for discrete-time models and

look at how misspeci�cation of the model leads to bias on the level of identi�cation, we have

to �nd a workaround for the fact that it isn't quite as easy to write down the identi�cation

formula for the drift-matrix as it is for regression coe�cients (see Equation 18). The

solution is to simulate empirical data that doesn't contain any measurement errors but

adheres perfectly to the expected variances and covariances of the variables in the true

model.

To achieve this, we specify a model with the ctsem package, extract the expected vari-

ances, covariances and means and use this information to generate a multivariate dataset

that perfectly follows this expected structure for the true model. Having found a way to

eliminate estimation issues we can now see how the drift-matrix gets estimated perfectly

if we analyse the data with the correct model, as opposed to the biased drift-parameters if

we misspecify the model for analysis, for example, by leaving out one of the true processes

for the analysis.

4.2. Modelling a treatment

To introduce the idea of continuous-time processes we have so far left out the treatment

variable from the introductory example. It is of course still possible to include a treatment

in these kinds of processes. Driver and Voelkle (2017) describe several ways a treatment

can be conceptualised in a continuous-time process. The general equation to describe these

processes extends Equation 19 with a vector of time-dependent predictors χ(t):

dη(t) =
(
Aη(t) + b+Mχ(t)

)
dt+GdW (t), (22)

19

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

where M contains the e�ects the time-dependent predictors have on η(t). The authors

describe a number of shapes that these time-dependent predictor e�ects can take, but since

it is the simplest, the one we will consider here is the 'basic impulse e�ect'. When we think

about how we imagine what happens in our experiment we would assume that loneliness

and depression are continuous processes interacting over time and that the hypnosis comes

in as an impulse to the system at some point, directly a�ecting the two processes only at

the time it occurs but its e�ects being carried on through the processes for a while after

the treatment has already stopped.

This kind of impulse can be modelled as a basic impulse in ctsem. The predictor X(t) is

technically still modelled as a process, but as having an expectation E(X(ti)) = 0 for most

of the time points i and only changing to a value E
(
X(tX)

)
6= 0 at the point in time tX

when the treatment occurs. If we specify the predictor accordingly, we get an estimation

of the e�ects of the treatment on the two processes ηi(t). Note that it is advisable to have

at least one observation before and one observation after the treatment, that is, a total of

at least three observation points for a proper calculation of the treatment e�ects on the

processes.

4.3. Causality in continuous-time models

While we can �gure out the causality conditions in any discrete-time process by exam-

ining which conditions will imply unbiasedness of certain conditional expectations like

E(η2t|η1t, X), unbiasedness is not de�ned in the context of continuous-time processes. In

Section 3 we were interested in causal interpretability of direct and indirect e�ects of X.

In continuous-time processes the whole concept of a direct e�ect doesn't seem to make any

sense since there will never be two observations of ηi(t) that do not have another unob-

served state of ηi(t) in between. All conditional expectations of our discrete observations

of ηi(t) will therefore just contain total e�ects whose size will depend on the time interval

in between observations.

How can we approach causal interpretability of this theoretically in�nite number of

e�ects? So far we haven't been able to fully understand all aspects of a continuous-time

model as necessary to con�dently state a way in which causality has to be approached

20

4 CONTINUOUS-TIME STOCHASTIC PROCESS MODELS

in continuous-time models. The �rst step towards this goal is to get better acquainted

with these models and one way to achieve that is the procedure that has been mentioned

in the previous sections: By repeatedly specifying generating processes and models for

analysis that do or don't match we can get a feeling for which misspeci�cation results in

which bias and by analysing the data with discrete-time regression models we can explore

how continuous-time parameters translate to discrete-time parameters for di�erent time

intervals between observations.

21

5 THE APP

5. The app

The application �Process Explorer� (PE) is a program to explore biases in discrete-time

and continuous-time processes that may or may not occur depending on the true (�data-

generating�) process and the model that is used for analysis. The app has been built in

the programming languare R (R Core Team, 2018) with version 1.1.0 of the package shiny

(Chang, Cheng, Allaire, Xie, & McPherson, 2018). A list of all required packages can be

found in appendix A, the code can be found in Section B . The app can be installed on

any computer with an internet connection regardless of whether R is installed on it or

not. To do that, the PE-installer can be downloaded from the authors dropbox. After the

download the installer has to be executed once to install the app and create a desktop icon.

5.1. Computation

The PE allows the user to specify a true, data-generating process and a model for analysis.

These can be speci�ed independently of each other. It is even possible to have di�erent

temporal structures for the two, for example specifying a continuous-time generating pro-

cess but analysing it with a discrete-time analysis model. The computation of the e�ects

for both versions of the analysis model will be explained shortly in the following.

Discrete-time analysis model If this model is chosen, the results are the linear re-

gressions coe�cients one obtains if a linear regression is applied to the generating process,

regardless of whether this process is a discrete-time process or a continuous-time pro-

cess. If the generating process is discrete-time, the procedure described in Section 3 is

used to compute the true regression coe�cients from the covariance matrix resulting from

the generating process. If the generating process is continuous, the regression coe�cients

are computed from the expected covariance matrices for the speci�ed number of discrete

observations points corresponding to the continuous-time process that has been speci�ed.

Continuous-time analysis model If a continuous-time analysis model is chosen, the

package ctsem is used to compute the drift matrix and, if applicable, the treatment e�ects

in the form of time-dependent predictor e�ects. Since the package requires a dataframe of

22

https://www.dropbox.com/s/myqzmps3ia5mi5v/Continuous%20Effects%20Explorer_installer.exe?dl=0

5 THE APP

discrete observations of the processes rather than their (true) covariance matrices, the app

internally creates such a dataframe that re�ects the speci�ed generating process without

any measurement error. For a discrete-time generating process this is possible by simulating

a dataframe that perfectly adheres to the true covariance matrix of the variables in the

process. Similarly, for a continuous-time generating process a dataframe is simulated that

adheres perfectly to the expected covariance matrices of this process. Then a ctsem analysis

is applied to these error-free dataframes.

Note that due to the form of the treatment in the continuous-time process (see Section

4.2) it is very hard to translate a continuous-time process into a form that is analysable

with linear regression. Therefore the analysis model for continuous-time processes with

a treatment variable is restricted to continuous-time processes. Furthermore, it is neces-

sary to specify at least three observation points when computing a treatment e�ect in a

continuous-time process.

For the performance of the continuous-time analysis there are some caveats. The �rst

one concerns computation time, which in general is longer than the time needed for re-

gression analysis anyway and will increase drastically with the number of variables. The

computation time also heavily depends on the �t of the model. The worse the analysis

model �ts the generating process, the longer the computation will last. Especially with a

discrete-time process it is vital to be very aware that some discrete-time e�ects we may

specify just do not correspond to any realistic continuous-time process and will there-

fore not yield interpretable drift parameters. If the estimating algorithm doesn't converge

because of this, the user gets an accordant noti�cation.

5.2. User interface

In this section the structure of the user interface will be explained. Whenever the name

of an element that can be found in the corresponding screen shot of the app is mentioned

for the �rst time, it is written in italics. The app is generally divided in two equally sized

parts: the input on the left hand side and the output on the right hand side. Everything

the user can manipulate is listed on the input side whereas everything the user gets as a

result of his input will appear on the output side. Both sides will now be explained.

23

5 THE APP

Input

The input is divided in two parts, represented by two tabs: speci�cation of the generating

process and speci�cation of the model for analysis.

Generating process The landing page for the generating process allows the user to

specify the parameters that de�ne the basic structure of the data-generating process. Those

parameters are the temporal structure of the process (discrete-time vs.continuous-time), the

number of processes, the speci�cation of an (only once occurring) treatment variable, the

number of time points for a discrete-time process or number of observations points for a

continuous-time process, respectively, as well as initial variances and initial correlations

of the processes.

Figure 7: Process parameters

24

5 THE APP

Depending on the parameters chosen, the auto-e�ects, cross-e�ects and treatment e�ects

can be speci�ed under the tab E�ects. The set-up of this input already hints at an assump-

tion the app makes: For reasons of simplicity it is assumed that in a discrete-time process

the e�ects of one ηit on the next ηj(t+1) are �xed over time, that is, all autoregressive and

cross-lag e�ects are the same for all of the time points.

Figure 8: E�ects

If the user wishes to download a simulated dataset of empirical data based on this generat-

ing process, he or she can do so under the tab Let me download data. Here one can specify

the number of observations, and the residual variance that is added for every instance of

ηit. Note that we assume that this residual variance is the same for all time points t ∈ T .

The csv-�le that is produced will be named DataForRegression.csv for a discrete-time pro-

25

5 THE APP

cess and DataForCtsem.csv for a continuous-time process. Both �les already have a format

that is suitable for an immediate analysis with the corresponding package in R. That is,

the discrete-time data comes in a format that is usable in linear regression or lavaan, the

continuous-time data comes in a format that is usable for a ctsem analysis.

Figure 9: Downloading data

Model for analysis For the analysis model, the user can specify the temporal structure

as being either a discrete-time or a continuous-time. For a discrete-time model the user can

pick one outcome variable and as many regressors as wanted. For a continuous-time model,

the user can chose the processes for analysis. As mentioned before in a continuous-time

process with a treatment variable, the analysis model is restricted to be continuous-time.

26

5 THE APP

Figure 10: Discrete model for analysis

Figure 11: Continuous model for analysis

Output

On the output side there are two tabs, Display the generating process and Display analysis

results. The �rst one displays a path diagram of the data-generating process. Due to

27

5 THE APP

drawing possibilities all variables appear in circles, however, that does not re�ect whether

they are manifest or latent. As the main concern of this app is identi�cation, we make

no assumptions for the measurement model and for whether the variables and processes

explored are latent or manifest.

Figure 12: Path diagram of the generating process

The second tab displays the results of the analysis with the analysis model that has been

speci�ed. For a discrete-time analysis it shows a table comparing the parameters calculated

for the analysis model with the parameters from the generating process. For a continuous-

time analysis it shows the computed drift matrix and, if applicable, the treatment e�ects.

This tab also shows the path diagrams of the generating process and the analysis model

next to each other to allow for a quicker overview over potential biases.

28

5 THE APP

Figure 13: Display of the analysis model

29

6 DISCUSSION

6. Discussion

Considering the many unresolved questions concerning causality in stochastic processes the

app presented in this thesis will hopefully prove useful as it can o�er a rather intuitive and

explorative way to approach causality. Though building an actual theory of course needs

a bottom up approach of de�ning the relevant concepts and building up logically from the

more abstract to the more concrete, the top-down approach of this app can serve as a �rst

entering point.

Having the ability to track how biases in analyses are introduced at the level of identi-

�cation already gives the user the opportunity to develop a deeper understanding of how

the principles of causality conditions work. The fact that one can �nd extensive litera-

ture on causal e�ects in discrete-time processes allows the user to retrace the claims made

within the app and furthermore allows to see how some of the causality conditions from

the literature on discrete-time processes may apply to continuous-time processes too.

A particular strength of this app is that it allows the user to keep apart questions of

identi�cation and estimation. For many practical users of statistical software the lines

between those two concepts often seem to blur. However it is very important two keep

these two things apart in order to adjust the method and statistical analysis at the correct

points if the results are biased. If the causal e�ect one is looking for is not identi�able

with the experimental design that was chosen, it doesn't help to increase the number of

observations or to use a more sophisticated algorithm for estimation. Likewise it doesn't

help to use a model that should be able to identify causal e�ects when there are other

problems that bias the estimation of those e�ects.

Looking 'under the hood' of the app there are still some aspects that could be optimized

in the future. The most prominent is the fact that I didn't �nd a clean way of identifying the

continuous-time drift parameters from the true covariance structure of a process. Though

I found a workaround to compute the true (estimation error free) parameters, this way still

technically involves an estimation algorithm that is time consuming and does not converge

if the model for analysis �ts the true model too poorly.

Another point is of course that the app makes several restrictive assumptions, for exam-

30

6 DISCUSSION

ple concerning the maximum number of processes and time points or the equality of the

autoregressive and cross-lag e�ects over time. However, those assumptions are necessary

to prevent the app from getting overloaded and confusing. All in all one can conclude

that this app contributes its own part to a better understanding of causality in stochastic

processes and all the exciting innovations that we encounter in this area of research at the

moment.

31

A REQUIRED R PACKAGES

7. Appendix

A. Required R packages

Name Version Authors

shiny 1.1.0 Chang, Cheng, Allaire, Xie, and McPherson (2018)

shinycssloaders 0.2.0 Sali (2017)

ctsem 2.5.0 Driver, Oud, and Voelkle (2017)

MASS 7.3-49 Venables and Ripley (2002)

stringr 1.3.1 Wickham (2018)

qgraph 1.5 Epskamp, Cramer, Waldorp, Schmittmann, and Borsboom (2012)

32

B CODE

B. Code

ui.R

library(shinycssloaders)

shinyUI(fluidPage(

fluidRow(

#####Input####

column(6,

h3("Input"),

####Generating model####

tabsetPanel(type = "tabs",

tabPanel("Generating process",

####Modelparameters####

tabsetPanel(type="pills",

tabPanel("Process parameters",

fluidRow(

column(6,

wellPanel(h5("Temporal structure in the generating

process"),

selectInput("true.time",

"",

choices = c("Discrete-time processes", "

Continuous-time processes"),

selected = "Discrete-time processes")),

wellPanel(h5("Treatment variable"),

uiOutput("treatment"),

uiOutput("treatmentNote")),

wellPanel(h5("Initial variances"),

33

B CODE

sliderInput("var1",

"eta11:",

min=0,

max=200,

step=1,

value=100,

ticks=F),

sliderInput("var2",

"eta21:",

min=0,

max=200,

step=1,

value=100,

ticks=F),

conditionalPanel(

condition= "input.NumberProcessesInp == 3",

sliderInput("var3",

"eta31:",

min=0,

max=200,

step=1,

value=100,

ticks=F)

)

)

),

column(6,

wellPanel(h5("Number of processes"),

numericInput("NumberProcessesInp",

"",

min=2,

max=3,

34

B CODE

value=2)),

wellPanel(uiOutput("timeTitle"),

sliderInput("NumberOfPoints",

"",

min=2,

max=6,

value = 3,

step = 1,

ticks=F),

uiOutput("timeNote")

),

wellPanel(h5("Initial correlation"),

sliderInput("cov12",

"eta11 and eta21",

min=-1,

max=1,

step=0.1,

value=0.5,

ticks=F),

conditionalPanel(

condition= "input.NumberProcessesInp == 3",

sliderInput("cov13",

"eta11 and eta31:",

min=-1,

max=1,

step=0.1,

value=0.5,

ticks=F),

sliderInput("cov23",

"eta21 and eta31:",

35

B CODE

min=-1,

max=1,

step=0.1,

value=0.5,

ticks=F)

)

)

)

)

),

####Effects####

tabPanel("Effects",

fluidRow(

div(uiOutput("effectsNote"),style=’padding:20px;’),

column(6,

####Autoeffects & treatment####

wellPanel(h5("Auto-effects"),

sliderInput("Eff11",

"eta1t",

min=-3,

max=3,

step=0.1,

value=-0.5,

ticks=F),

sliderInput("Eff22",

"eta2t:",

min=-3,

max=3,

step=0.1,

value=-0.2,

ticks=F),

conditionalPanel(

36

B CODE

condition= "input.NumberProcessesInp == 3",

sliderInput("Eff33",

"eta3t:",

min=-3,

max=3,

step=0.1,

value=-0.3,

ticks=F))

)

),

####Crosseffects####

column(6,

wellPanel(h5("Cross-effects"),

sliderInput("Eff12",

"eta1t on eta2t:",

min=-3,

max=3,

step=0.1,

value=0.5,

ticks=F),

sliderInput("Eff21",

"eta2t on eta1t:",

min=-3,

max=3,

step=0.1,

value=0.7,

ticks=F),

conditionalPanel(

condition= "input.NumberProcessesInp > 2",

sliderInput("Eff13",

"eta1t on eta3t:",

min=-3,

37

B CODE

max=3,

step=0.1,

value=0.4,

ticks=F),

sliderInput("Eff31",

"eta3t on eta1t:",

min=-3,

max=3,

step=0.1,

value=0.7,

ticks=F),

sliderInput("Eff23",

"eta2t on eta3t:",

min=-3,

max=3,

step=0.1,

value=0.3,

ticks=F),

sliderInput("Eff32",

"eta3t on eta2t:",

min=-3,

max=3,

step=0.1,

value=0.1,

ticks=F)

)

)

)),

####Treatment effects####

conditionalPanel(condition="input.treatment != ’No Treatment’",

38

B CODE

wellPanel(fluidRow(

div("Treatment effects",style=’padding:17px;’),

column(4,

uiOutput("treatEff1")),

column(4,

uiOutput("treatEff2")),

column(4,conditionalPanel(condition="input.

NumberProcessesInp>2",

uiOutput("treatEff3")))))

)),

#####Download Data#####

tabPanel("Let me download data",br(),br(),

div("Here you can download a dataset generated from the

specified parameters.", style=’padding:20px;’) ,br(),

column(8,

wellPanel(

sliderInput("ObsNum",

"Number of observations",

min=1,

max=10000,

step=1,

value=100,

ticks=F)

),

wellPanel(

"Specify the residual terms to add for the simulation of

empirical data",br(),br(),

sliderInput("res1",

"Residual variance for eta1t",

min=0,

max=10,

step=0.1,

value=0.1,

ticks=F),

39

B CODE

sliderInput("res2",

"Residual variance for eta2t",

min=0,

max=10,

step=0.1,

value=0.1,

ticks=F),

conditionalPanel(condition= "input.NumberProcessesInp > 2",

sliderInput("res3",

"Residual variance for eta3t",

min=0,

max=10,

step=0.1,

value=0.1,

ticks=F))),

wellPanel(uiOutput("downloadNote"),

downloadButton("downloadData", "Download"), "Click to download

data as csv-file.")

))

)),

####Analysemodell####

tabPanel("Model for analysis",br(),br(),

uiOutput("analyse.time"),

uiOutput("analysed.model"),

uiOutput("regressors")

))

),

####Output (right)#####

column(6,

h3("Output"),

tabsetPanel(type = "tabs",

40

B CODE

tabPanel("Display the generating process",

br(),br(),

actionButton("updateDiagram", "Update diagram"),

br(),br(),

h4("Path diagram of the generating process"),

"This diagram displays the process you have specified.",

br(),br(),

helpText("All manifest indicators and

residual terms are omitted."),

withSpinner(plotOutput("plot", width="auto"))

),

tabPanel("Display analysis results",

h4("Analysis results"),

actionButton("updateAnalysis", "Update analysis/diagrams"), br

(), br(),

uiOutput("analysisNote"),br(),br(),

uiOutput("results.title"),br(),

textOutput("ctsemMessage"),br(),

withSpinner(tableOutput("analysisResult")),br(),

uiOutput("TDpredTitle"),

uiOutput("TDpred"),

strong("The generating process"),

plotOutput("plot1"),

strong("The analysis model"),

plotOutput("plot2")

)

)

)

)

))

server.R

41

B CODE

library(stringr)

library(ctsem)

library(MASS)

library(qgraph)

library(shiny)

shinyServer(function(session,input, output) {

####reactive ui elements####

output$analyse.time<-renderUI({

if(is.null(true.time())|is.null(treat())){return()}

if(true.time()==1 & treat()==1){

selectInput("analyseTime",

"Temporal structure of the analysis model has to be

continuous if treatment is chosen",

choices = c("Continuous-time processes"),

selected = "Continuous-time processes")

}else{

selectInput("analyseTime",

"Temporal structure of the analysis model",

choices = c("Discrete-time processes", "Continuous-time

processes"),

selected = "Discrete-time processes")}

})

output$treatment<-renderUI({

if(is.null(tim())){return()}

treat.choice<-if(true.time()==0){

c("No Treatment",paste0("Treatment at t=", 1:(tim

()-1)))

}else{

c("No Treatment", "Treatment")}

selectInput("treatment","", choices=treat.choice, selected="No

42

B CODE

Treatment")

})

##############Reactive Treatment effects######################

treat.time<-reactive({as.numeric(str_extract(input$treatment, "[1-9]"))

})

output$treatEff1<-renderUI({if(treat()==1)

if(true.time()==1){

sliderInput("treatEff1",

"Effect on eta1t",

min=-3,

max=3,

step=0.1,

value=0.5,

ticks=F)

}else{

lapply((treat.time()+1):tim(), function(i){

sliderInput(paste0("treatEff1",i),

paste0("Effect on eta1",i),

min=-3,

max=3,

step=0.1,

value=0,

ticks=F)})}

})

output$treatEff2<-renderUI({if(treat()==1)

if(true.time()==1){

sliderInput("treatEff2",

"Effect on eta2t",

min=-3,

43

B CODE

max=3,

step=0.1,

value=0.3,

ticks=F)

}else{

lapply((treat.time()+1):tim(), function(i){

sliderInput(paste0("treatEff2",i),

paste0("Effect on eta2",i),

min=-3,

max=3,

step=0.1,

value=0,

ticks=F)})}

})

output$treatEff3<-renderUI({if(treat()==1)

if(true.time()==1){

sliderInput("treatEff3",

"Effect on eta3t",

min=-3,

max=3,

step=0.1,

value=0.6,

ticks=F)

}else{

lapply((treat.time()+1):tim(), function(i){

sliderInput(paste0("treatEff3",i),

paste0("Effect on eta3",i),

min=-3,

max=3,

step=0.1,

value=0,

ticks=F)})}

44

B CODE

})

output$analysed.model<-renderUI({

if(is.null(analyse.time())){return()}

if(analyse.time()==0){

selectInput("regressand",

"Choose the outcome:",

choices = variables()[(n()+1):(length(variables()))],

selected="eta23")

}else{

selectInput("analysed.processes",

"Which processes shall be included in the analysis?",

choices = if(treat()==0){paste0(processes(),"t")}else{c(

paste0(processes(),"t"),"X")},

selected="eta1t",

multiple = T)

}

})

output$regressors<-renderUI({

if(is.null(input$regressand)|is.null(variables())){return()

}else if(analyse.time()==1){

return()}else{

vars<-isolate(variables())

y<-input$regressand

wahl<-vars[substring(vars,5) < substring(y,5)]

if(treat()==1) {wahl<-c("X",wahl)}

selectInput("regressoren",

"Choose the regressors:",

choices = wahl,

selected = "eta11",

multiple = T)}

45

B CODE

})

#####reactive headings and lines of text####

output$analysisNote<-renderUI({ifelse(analyse.time()==1,"Note that a

continuous-time model can take up to two minutes of computation

time.", return())})

output$treatmentNote<-renderUI({helpText(ifelse(true.time()==1, "For

continuous-time models we assume the treatment takes place in the

middle oberservation.", return()))})

output$effectsNote<-renderUI({helpText(ifelse(true.time()==1, "Note

that for continuous-time models the effects can not be intepreted

in the same way as discrete effects, for an explanation see the

manual of this app.",return()))})

output$downloadNote<-renderUI(helpText(ifelse(true.time()==1,"

Simulation of large datasets according to a continuous model can

take some time.",return())))

output$timeTitle<-renderUI({ifelse(true.time()==0,"Number of time

points","Number of measurement occasions")})

output$timeNote<-renderUI({helpText(ifelse(true.time()==1&treat()==1,"A

minimum of 3 observation points is advisable for correct

calculation of treatment effects.",return()))})

results.title<-eventReactive(input$updateAnalysis,{ifelse(analyse.time

()==0,paste("Effects of the chosen regressors on",as.character(

input$regressand)), "Calculated drift matrix")},ignoreNULL = F)

output$results.title<-renderUI(strong({results.title()}))

TDpredTitle<-eventReactive(input$updateAnalysis,"Calculated treatment

effects")

46

B CODE

output$TDpredTitle<-renderUI({

if(analyse.time()==1 & "X" %in% analysed.processes())

{strong(TDpredTitle())}else{return()}

})

######Read in data#####

tim<-reactive({input$NumberOfPoints})

n<-reactive({input$NumberProcessesInp})

true.time<-reactive({ifelse(input$true.time=="Discrete-time processes"

,0,1)})

analyse.time<-reactive({if(is.null(input$analyseTime)){return()}else if

(input$analyseTime=="Discrete-time processes"){0}else{1}})

treat<-reactive({if(is.null(input$treatment)){0}else if(input$treatment

=="No Treatment"){0}else{1}})

regressors<-reactive({input$regressoren})

analysed.processes<-reactive({input$analysed.processes})

##Variablennamen

processes<-reactive({

paste0("eta",1:input$NumberProcessesInp)})

variables<- reactive({if(is.null(tim())){return()}

paste0(processes(), rep(1:tim(), each=n()))})

exos<- reactive({

if(treat()==0){paste0(processes(),1)

} else {c("X",paste0(processes(),1))}})

endos<-reactive({if(is.null(tim())){return()}

paste0(processes(), rep(2:tim(), each=n()))})

47

B CODE

###Varianzen/Kovarianzen

varcov<-reactive({

varcov<-matrix(c(input$var1,input$cov12*sqrt(input$var1)*sqrt(input$

var2), input$cov13*sqrt(input$var1)*sqrt(input$var3),

input$cov12*sqrt(input$var1)*sqrt(input$var2), input$

var2, input$cov23*sqrt(input$var2)*sqrt(input$var3),

input$cov13*sqrt(input$var1)*sqrt(input$var3), input$

cov23*sqrt(input$var2)*sqrt(input$var3), input$var3)

,3, byrow=T,

dimnames = list(c("eta11","eta21","eta31"),c("eta11","

eta21","eta31")))[1:n(),1:n()]

})

###Effekte

effects<-reactive({

m<-matrix(c (input$Eff11, input$Eff21, input$Eff31,

input$Eff12, input$Eff22, input$Eff32,

input$Eff13, input$Eff23, input$Eff33), 3,byrow=T,

dimnames = list(c("eta1","eta2","eta3"),c("eta1","eta2","

eta3")))[1:n(),1:n()]

if(true.time()==1){

validate(

need(det(m) != 0 & input$Eff11!=-input$Eff22, "The effect

matrix you chose cannot be solved. Please choose different

effects (e.g. auto-effects shouldn’t add up to zero)"))}

m

})

treat.effects<-reactive({if(treat()==1)

if(true.time()==0){

48

B CODE

lhs1 <- paste0("e1",(treat.time()+1):tim())

rhs1 <- paste0("input$treatEff1",(treat.time()+1):tim())

l1 <- paste(paste(lhs1, rhs1, sep="<-"), collapse=";")

lhs2 <- paste0("e2",(treat.time()+1):tim())

rhs2 <- paste0("input$treatEff2",(treat.time()+1):tim())

l2 <- paste(paste(lhs2, rhs2, sep="<-"), collapse=";")

lhs3 <- paste0("e3",(treat.time()+1):tim())

rhs3 <- paste0("input$treatEff3",(treat.time()+1):tim())

l3 <- paste(paste(lhs3, rhs3, sep="<-"), collapse=";")

if(n()>2){eval(parse(text=c(l1,l2,l3)))}else{eval(parse(text=c(l1,l2

)))}

ls<-ls()[grepl("^e",ls())]

ls<-mysort(ls,3)

l4<-paste0("c(",paste(ls,collapse=","),")")

matrix(eval(parse(text=l4)), ncol=1)

}else{

matrix(c(input$treatEff1, input$treatEff2, input$treatEff3),ncol=1,

nrow = 3)[1:n(),]

}

})

########Process data###########

####True model discrete####

#Effects of endogenous variables

B<-reactive({

if(is.null(tim())){return()}

B<-matrix(0,nrow=n()*(tim()-1), ncol=n()*(tim()-1), dimnames = list(

49

B CODE

endos(), endos()))

if(tim()>2) {

for(i in (1:(tim()-2))){

B[(i*n()+(1:n())),((i-1)*n()+(1:n()))] <- effects()

}

}

B

})

#Effects of exogenous variables on endogenous variables

Gamma<-reactive({

if(is.null(tim())){return()}

treat.time<-if(treat()==0){NULL} else {as.numeric(str_extract(input$

treatment, "[1-9]"))+1}

Gamma<-matrix(0,nrow = n()*(tim()-1), ncol = n()+treat(), dimnames =

list(endos(), exos()))

if(treat()==1) Gamma[(n()*(treat.time()-1)+1):(n()*(tim()-1)),1]<-

treat.effects()

Gamma[(1:(n())),((1+treat()):(n()+treat()))]<-effects()

Gamma

})

#Complete effects matrix

all.effects<-reactive({

if(is.null(tim())){return()}

temp<-cbind(Gamma(), B())

temp2<-matrix(0, nrow = n()+treat(), ncol=n()*tim()+treat())

rownames(temp2)<-exos()

rbind(temp2, temp)

})

#Variance & covariance of exogenous variables

Phi<-reactive({

Phi<-matrix(0,nrow =n()+treat(), ncol=n()+treat())

50

B CODE

Phi[1,1]<-100

Phi[(1+treat()):(n()+treat()),(1+treat()):(n()+treat())]<-varcov()

dimnames(Phi)<-list(exos(), exos())

Phi

})

#Residual variances and covariances

Psi<-reactive({

Psi<-diag(c(input$res1, input$res2, input$res3)[1:n()], nrow= n()*(

tim()-1))

rownames(Psi)<-endos()

colnames(Psi)<-endos()

Psi

})

#Identity matrix

I<-reactive({

diag(nrow = n()*(tim()-1))

})

#Variances and covariances of endogenous variables

Erg1<-reactive({solve(I()-B())%*% (Gamma() %*% Phi() %*% t(Gamma()) +

Psi()) %*% solve(I()-t(B()))})

#Covariance of endogenous and exogenous variables

Erg2<-reactive({Phi()%*%t(Gamma())%*%solve(I()-t(B()))})

#Complete variances and covariances

gesamt<-reactive({

if(true.time()==1){

validate(need(treat()==0,""))

erg<-cov()

colnames(erg)<-variables()

rownames(erg)<-variables()

51

B CODE

erg

}else{

oben<-cbind(Phi(),Erg2())

unten<-cbind(t(Erg2()), Erg1())

rbind(oben,unten)}

})

####True model continuous####

fit1<-reactive({

model<-ctModel(

Tpoints=tim(),

n.latent=n(),

n.manifest=n(),

MANIFESTVAR=t(chol(diag(.001,n()))),

LAMBDA=diag(1,n()),

DRIFT=effects(),

DIFFUSION=t(chol(matrix(rep(0.01,n()*n()),n()))),

T0VAR=t(chol(unname(varcov()))))

if(treat()==1){

TDPREDMEANS=matrix(0,tim(),1)

TDPREDMEANS[ceiling(tim()/2)]=1

TDPREDEFFECT<-treat.effects()

model<-ctModel(

Tpoints=tim(),

n.latent=n(),

n.manifest=n(),

n.TDpred=treat(),

TDPREDMEANS=TDPREDMEANS,

TDPREDEFFECT = matrix(TDPREDEFFECT,nrow = n(),ncol = 1),

MANIFESTVAR=t(chol(diag(.001,n()))),

LAMBDA=diag(1,n()),

DRIFT=effects(),

DIFFUSION=t(chol(matrix(rep(0.01,n()*n()),n()))),

52

B CODE

T0VAR=t(chol(unname(varcov()))))

}

d<-ctGenerate(model, 10)

ctFit(dat=d, ctmodelobj=model, nofit = T)

})

cov<-reactive({

if(true.time()==1){

mxGetExpected(fit1()$mxobj, "covariance")

}else{

gesamt()

}})

mean<-reactive({

if(true.time()==1){

mxGetExpected(fit1()$mxobj, "means")

}else{

rep(1,n()*tim())

}})

data<-reactive({

cov<-if(treat()==0|input$true.time=="Continuous-time processes"){cov

()}else{cov()[2:nrow(cov()),2:ncol(cov())]}

data<-mvrnorm(

n=500,

mu=mean(),

Sigma = cov,

empirical = T

)

data<-as.data.frame(data)

names<-paste0(paste0("Y",1:n()),rep(paste0("_T",0:(tim()-1)),each=n

()))

colnames(data)<-names

53

B CODE

colnames(data)[is.na(colnames(data))]<-paste0("TD1_T",0:(tim()-1))

if(true.time()==0 & treat()==1){

TD<-matrix(0,ncol = tim(),nrow=500)

TD[,ceiling(tim()/2)]<-1

colnames(TD)<-paste0("TD1_T",0:(tim()-1))

data<-cbind(data,TD)}

m<-matrix(1,ncol=tim()-1,nrow=500)

colnames(m)<-paste0("dT",1:(tim()-1))

data<-cbind(data,m)

data

})

####Download data according to model####

downData<-reactive({

if(true.time()==1){

model<-ctModel(

Tpoints=tim(),

n.latent=n(),

n.manifest=n(),

MANIFESTVAR=t(chol(diag(.001,n()))),

LAMBDA=diag(1,n()),

DRIFT=effects(),

DIFFUSION = t(chol(diag(c(input$res1, input$res2, input$res3)

[1:n()],n()))),

DIFFUSION=t(chol(matrix(rep(0.01,n()*n()),n()))),

T0VAR=t(chol(unname(varcov()))))

if(treat()==1){

TDPREDMEANS=matrix(0,tim(),1)

TDPREDMEANS[ceiling(tim()/2)]=1

TDPREDEFFECT<-treat.effects()

model<-ctModel(

Tpoints=tim(),

n.latent=n(),

54

B CODE

n.manifest=n(),

n.TDpred=treat(),

TDPREDMEANS=TDPREDMEANS,

TDPREDEFFECT = matrix(TDPREDEFFECT,nrow = n(),ncol = 1),

MANIFESTVAR=t(chol(diag(.001,n()))),

LAMBDA=diag(1,n()),

DRIFT=effects(),

DIFFUSION = t(chol(diag(c(input$res1, input$res2, input$

res3)[1:n()],n()))),

DIFFUSION=t(chol(matrix(rep(0.01,n()*n()),n()))),

T0VAR=t(chol(unname(varcov()))))

}

ctGenerate(model, input$ObsNum)

}else{

mean<-if(treat()==0){mean()}else{c(1,mean())}

mvrnorm(n=input$ObsNum, mu=mean, Sigma = gesamt())

}

})

output$downloadData <- downloadHandler(

filename = function() {

ifelse(true.time()==0,"DataForRegression.csv", "DataForCtsem.csv"

)

},

content = function(file) {

write.csv(downData(), file, row.names = FALSE)

}

)

Model for analysis

####Discrete####

#Indicators of regressors

55

B CODE

uv.num<-reactive({sort(charmatch(input$regressoren, colnames(gesamt()))

)})

av.num<-reactive({charmatch(input$regressand, colnames(gesamt()))})

Regressorenmatrix<-reactive({gesamt()[uv.num(), uv.num()]})

KovMitAv<-reactive({as.matrix(gesamt()[uv.num(),av.num()])}) #Kovarianz

Regressoren mit Regressand und Entfernung irrelevanter Variablen

##sorting names of regressors

mysort<-function(x,last){

temp<-x[order(as.numeric(substring(x,last-1)), na.last = F)]

erg<-temp[order(as.numeric(substring(temp,last)), na.last = F)]

erg

}

Koeffizienten<-reactive({

estimated<-round(solve(Regressorenmatrix())%*%KovMitAv(),2)

namen<-mysort(input$regressoren,5)

if(true.time()==0){

true<-all.effects()[av.num(),uv.num()]

d<-data.frame(estimated,true, row.names=namen)

names(d)<-c("Parameters in the analysis model","Parameters in the

generating process")

d

}else{

d<-data.frame(estimated, row.names=namen)

names(d)<-"Parameters in the analysis model"

d

}

})

####Continuous####

56

B CODE

Drift<- eventReactive(input$updateAnalysis,{

if(is.null(analysed.processes())){return()}

n<-if("X" %in% analysed.processes()){length(analysed.processes())-1}

else{length(analysed.processes())}

numbers<-na.exclude(str_extract(analysed.processes(), "[1-9]"))

chosen<-paste0(paste0("Y",numbers),rep(paste0("_T",0:(tim()-1)),each

=n))

if("X" %in% analysed.processes()){chosen<-c(chosen,paste0("TD1_T"

,0:(tim()-1)))}

chosen<-c(chosen,paste0("dT",1:(tim()-1)))

data<-data()[,names(data())%in%chosen]

names(data)[1:(n*tim())]<-paste0(paste0("Y",(1:n)),rep(paste0("_T"

,0:(tim()-1)),each=n))

TDPREDMEANS=matrix(0,1*tim(),1)

TDPREDMEANS[ceiling(tim()/2)]=1

TDPREDEFFECT<-treat.effects()

model<-ctModel(

Tpoints=tim(),

n.latent=n,

n.manifest=n,

MANIFESTVAR=t(chol(diag(.001,n))),

LAMBDA=diag(1,n),

#DIFFUSION = t(chol(diag(c(input$res1, input$res2, input$res3)[1:

n()],n()))),

DIFFUSION=t(chol(matrix(rep(0.01,n*n),n))),

T0VAR=t(chol(unname(varcov()[as.numeric(numbers),as.numeric(

numbers)]))))

if("X" %in% analysed.processes()){

model<-ctModel(

Tpoints=tim(),

n.latent=n,

57

B CODE

n.manifest=n,

n.TDpred=1,

TDPREDMEANS=TDPREDMEANS,

MANIFESTVAR=t(chol(diag(.001,n))),

LAMBDA=diag(1,n),

DIFFUSION = t(chol(diag(c(input$res1, input$res2, input$res3)[1:

n()],n()))),

DIFFUSION=t(chol(matrix(rep(0.01,n*n),n))),

T0VAR=t(chol(varcov()[as.numeric(numbers),as.numeric(numbers)])))

}

ctsemMessage<-capture.output(fit2<-ctFit(dat = data, ctmodelobj =

model), type="message")

drift<-round(summary(fit2)$DRIFT,2)

tref<-summary(fit2)$TDPREDEFFECT

colnames(drift)<-paste0("eta",numbers)

rownames(drift)<-colnames(drift)

list(t(drift),tref,ctsemMessage)

}, ignoreNULL = F)

######Results for output######

###Complete path diagram###

graph<-eventReactive(c(input$updateDiagram,input$updateAnalysis),{

m<- if(true.time()==0){

t(all.effects())

}else{

if(treat()==0){

t(effects())

}else{

rbind(c(0,t(treat.effects())),(cbind(0,t(effects()))))

}}

58

B CODE

lay<- if(true.time()==0){

if(treat()==1){

matrix(as.numeric(c(c(as.numeric(str_extract(input$treatment,

"[1-9]"))-2, rep(-1:(tim()-2),each=n())), 0.5,rep(1:(2-n())

,tim()))),ncol=2)

}else{

matrix(as.numeric(c(rep(-1:(tim()-2),each=n()),rep(1:(2-n()),

tim()))),ncol=2)

}

}else{

if(treat()==1){

matrix(c(c(0,c(0,1.5,3)[1:n()]),c(0.5,c(-0.5,0.5,-0.5)[1:n()])

), ncol=2)

}else{

matrix(c(c(0,1.5,3)[1:n()],c(-0.5,0.5,-0.5)[1:n()]), ncol=2)

}}

lab<-if(true.time()==0){if(treat()==1){c("X",variables())}else{

variables()}}else{if(treat()==1){c("X","eta1t","eta2t","eta3t")[1:(

n()+1)]}else{c("eta1t","eta2t","eta3t")[1:n()]}}

shape<-if(true.time()==0){

if(treat()==1){c("square",rep("circle",length(variables())))}else{"

circle"}

}else{

if(treat()==1){c("square",rep("circle",n()))}else{"circle"}

}

##ignoring shape at the moment, to use, set shape=graph()$shape in the

qgraph command

list(m=m, lay=lay, lab=lab, shape=shape)

}, ignoreNULL = F)

59

B CODE

output$plot<-renderPlot({

g<-graph()

vars<-matrix(c(0,isolate(input$cov12*sqrt(input$var1)*sqrt(input$

var2)), isolate(input$cov13*sqrt(input$var1)*sqrt(input$var3)),

isolate(input$cov12*sqrt(input$var1)*sqrt(input$var2)),

0, isolate(input$cov23*sqrt(input$var2)*sqrt(input$

var3)),

isolate(input$cov13*sqrt(input$var1)*sqrt(input$var3)),

isolate(input$cov23*sqrt(input$var2)*sqrt(input$

var3)), 0),3, byrow=T)[1:isolate(n()),1:isolate(n())

]

qgraph(g$m, layout=g$lay, directed=T,rescale=F,mar=c(3,10,3,35),

aspect=T,parallelEdge=T,labels=g$lab,posCol="steelblue3",negCol=

"slategray", edge.label.position=0.25,edge.labels=T,edge.width

=0.3,edge.label.cex=1.25, fade=F)

if(isolate(true.time()==0)){qgraph(vars,labels=F,color="transparent"

,layout=g$lay[(1+isolate(treat())):isolate(n()+treat()),],plot=F

, rescale=F,borders=F,curve=-5.5, curveAll=T,edge.width=0.1,edge

.color="black",edge.labels=T,edge.label.cex=1.5, fade=F)}

})

output$plot1<-renderPlot({

g<-graph()

vars<-matrix(c(0,isolate(input$cov12*sqrt(input$var1)*sqrt(input$

var2)), isolate(input$cov13*sqrt(input$var1)*sqrt(input$var3)),

isolate(input$cov12*sqrt(input$var1)*sqrt(input$var2)),

0, isolate(input$cov23*sqrt(input$var2)*sqrt(input$

var3)),

isolate(input$cov13*sqrt(input$var1)*sqrt(input$var3)),

isolate(input$cov23*sqrt(input$var2)*sqrt(input$var3)

), 0),3, byrow=T)[1:isolate(n()),1:isolate(n())]

qgraph(g$m, layout=g$lay, directed=T,rescale=F,mar=c(3,10,3,35),

aspect=T,parallelEdge=T,labels=g$lab,posCol="steelblue3",negCol=

"slategray", edge.label.position=0.25,edge.labels=T,edge.width

60

B CODE

=0.3,edge.label.cex=1.25, fade=F)

if(isolate(true.time()==0)){qgraph(isolate(varcov()),labels=F,color=

"transparent",layout=g$lay[(1+isolate(treat())):isolate(n()+

treat()),],plot=F, rescale=F,borders=F,curve=-5.5, curveAll=T,

edge.width=0.1,edge.color="black",edge.labels=T,edge.label.cex

=1.5, fade=F)}

})

###Analysed path diagram###

graph_part<-eventReactive(input$updateAnalysis,{

complete<-graph()

m<- if(analyse.time()==0){

size<-length(input$regressoren)+1

temp<-matrix(0,nrow =size,ncol =size)

temp[size,]<-c(round(solve(Regressorenmatrix())%*%KovMitAv(),2)

,0)

t(temp)

}else{

dr<-Drift()

if(!"X" %in% analysed.processes()){

erg<-dr[[1]]

}else{

erg<-rbind(c(0,dr[[2]]),(cbind(0,dr[[1]])))

}

erg

}

lay<- if(analyse.time()==0){

temp<-matrix(as.numeric(c(rep(-1:(tim()-2),each=n()),rep(1:(2-n()

),tim()))),ncol=2)

if(treat()==0){

temp[c(uv.num(),av.num()),]

}else{

61

B CODE

if("X" %in% regressors()){

complete$lay[c(uv.num(),av.num()),]

}else{

temp[c(uv.num()-1,av.num()-1),]

}}

}else{

n<-if("X" %in% analysed.processes()){length(analysed.processes())

-1}else{length(analysed.processes())}

if("X" %in% analysed.processes()){

matrix(c(c(0,c(0,1.5,3)[1:n]),c(0.5,c(-0.5,0.5,-0.5)[1:n])),

ncol=2)

}else{

matrix(c(c(0,1.5,3)[1:n],c(-0.5,0.5,-0.5)[1:n]), ncol=2)

}}

lab<-if(analyse.time()==0){c(mysort(regressors(),5),input$regressand

)}else{analysed.processes()[order(as.numeric(substring(analysed.

processes(),4,4)), na.last = F)]}#mysort(analysed.processes(),5)

}

shape<-{"circle"}

if("X" %in% regressors()){c("square",rep("circle",(length(

regressors())-1)))}else{"circle"}

}else{

if("X" %in% analysed.processes()){c("square",rep("circle",n))}

else{"circle"}

list(m=m, lay=lay, lab=lab, shape=shape)

}, ignoreNULL = F)

output$plot2<-renderPlot({

62

B CODE

g<-graph_part()

qgraph(g$m, layout=g$lay, directed=T,rescale=F,mar=c(3,10,3,35),

aspect=T,parallelEdge=T,labels=g$lab,posCol="steelblue3",negCol=

"slategray", edge.label.position=0.25,edge.labels=T,edge.width

=0.3,edge.label.cex=1.25, fade=F)

})

analysisResult<-eventReactive(input$updateAnalysis,

{validate(need(!is.null(input$regressoren),"Please choose a

regressor"))

if(analyse.time()==1){

erg<-Drift()[[1]]

colnames(erg)<-analysed.processes()[1:ncol(erg)][order(as.numeric

(substring(analysed.processes()[1:ncol(erg)],4,4)), na.last =

F)]

rownames(erg)<-analysed.processes()[1:ncol(erg)][order(as.numeric

(substring(analysed.processes()[1:ncol(erg)],4,4)), na.last =

F)]

return(erg)

}else{

Koeffizienten()}}, ignoreNULL = F

)

##########

tdpredeffect<-eventReactive(input$updateAnalysis,

{

erg<-Drift()[[2]]

rownames(erg)<-isolate(analysed.processes())[1:

nrow(erg)][order(as.numeric(substring(

analysed.processes()[1:nrow(erg)],4,4)), na

.last = F)]

return(erg)

})

63

B CODE

########Objects to render##########

###Drift/Regression coefficients

output$analysisResult<-renderTable({

analysisResult()},rownames=T,colnames=T, striped = T, bordered = T)

###Treatment effects

output$tdpredeffect<-renderTable(

{tdpredeffect()},rownames=T,colnames=F, striped = T, bordered = T)

output$TDpred<-renderUI({

req(input$updateAnalysis)

if(is.null(analyse.time())|!"X" %in% analysed.processes()){return()}

if(analyse.time()==1)

tableOutput("tdpredeffect")

})

output$ctsemMessage<-renderText({if("Retry limit reached" %in% Drift()

[[3]]){

"The algorithm didn’t converge. If the calculated effects are very

big, consider specifying a more realistic continuous process."

}

})

####Run even when hidden

outputOptions(output, "analysed.model", suspendWhenHidden = FALSE)

outputOptions(output, "regressors", suspendWhenHidden = FALSE)

outputOptions(output, "analyse.time", suspendWhenHidden = FALSE)

outputOptions(output, "treatEff1", suspendWhenHidden = FALSE)

outputOptions(output, "treatEff2", suspendWhenHidden = FALSE)

outputOptions(output, "treatEff3", suspendWhenHidden = FALSE)

64

B CODE

#For RInno

session$onSessionEnded(function() {

stopApp()

q("no")

})

})

65

References

References

Alpass, F. M. & Neville, S. (2003). Loneliness, health and depression in older males. Aging

& Mental Health, 7 (3), 212�216.

Baron, R. M. & Kenny, D. A. (1986). The moderator mediator variable distinction in social

psychological research: Conceptual, strategic, and statistical considerations. Journal

of Personality and Social Psychology, 51 (6), 1173�1182.

Cacioppo, J. T., Hawkley, L. C., Ernst, J. M., Burleson, M., Berntson, G. G., Nouriani, B.,

& Spiegel, D. (2006). Loneliness within a nomological net: An evolutionary perspec-

tive. Journal of Research in Personality, 40, 1054�1085.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2018). Shiny: web application

framework for r. R package version 1.1.0. Retrieved from https://CRAN.R-project.

org/package=shiny

Deboeck, P. R. & Preacher, K. J. (2015). No need to be discrete: a method for continuous

time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal,

23 (1), 61�75. doi:10.1080/10705511.2014.973960

Driver, C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation

modeling with r package ctsem. Journal of Statistical Software, 77 (5). doi:10.18637/

jss.v077.i05

Driver, C. & Voelkle, M. (2017). Understanding the time course of interventions with con-

tinuous time dynamic models.

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D.

(2012). qgraph: network visualizations of relationships in psychometric data. Journal

of Statistical Software, 48 (4), 1�18. Retrieved from http://www.jstatsoft.org/v48/

i04/

Fayant, M.-P., Sigall, H., Lemonnier, A., Retsin, E., & Alexopoulos, T. (2017). On the lim-

itations of manipulation checks: an obstacle toward cumulative science. International

Review of Social Psychology, 30 (1), 125�130. doi:10.5334/irsp.102

Jöreskog, K. G. & Sörbom, D. (1988). Lisrel 7: a guide to the program and applications.

Spss.

66

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://dx.doi.org/10.1080/10705511.2014.973960
https://dx.doi.org/10.18637/jss.v077.i05
https://dx.doi.org/10.18637/jss.v077.i05
http://www.jstatsoft.org/v48/i04/
http://www.jstatsoft.org/v48/i04/
https://dx.doi.org/10.5334/irsp.102

References

Mayer, A., Thoemmes, F., Rose, N., Steyer, R., & West, S. G. (2014). Theory and analysis

of total, direct, and indirect causal e�ects. Multivariate Behavioral Research, 49 (5),

425�442.

MPLUS (Version 8).[Computer Software].

R Core Team. (2018). R: a language and environment for statistical computing. R Foun-

dation for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-

project.org/

Rosseel, Y. (2012). lavaan: an R package for structural equation modeling. Journal of

Statistical Software, 48 (2), 1�36. Retrieved from http://www.jstatsoft.org/v48/i02/

Sali, A. (2017). Shinycssloaders: add css loading animations to 'shiny' outputs. R package

version 0.2.0. Retrieved from https://CRAN.R-project.org/package=shinycssloaders

Sigall, H. & Mills, J. (1998). Measures of independent variables and mediators are useful

in social psychology experiments: but are they necessary? Personality and Social

Psychology Review, 2 (3), 218�226.

Steiner, P. M., Cook, T. D., Shadish, W. R., & Clark, M. H. (2010). The importance of

covariate selection in controlling for selection bias in observational studies. Psycho-

logical Methods, 15 (3), 250�267. doi:10.1037/a0018719

Steyer, R., Mayer, A., & Fiege, C. (2014). Causal inference on total, direct, and indi-

rect e�ects. In Encyclopedia of quality of life and well-being research (pp. 606�630).

Springer Netherlands. doi:10.1007/978-94-007-0753-5_295

Venables, W. N. & Ripley, B. D. (2002). Modern applied statistics with s (Fourth). ISBN

0-387-95457-0. New York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/

MASS4

Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach

to continuous time modeling of panel data: relating authoritarianism and anomia.

Psychological Methods, 17 (2), 176�192. doi:10.1037/a0027543

Wickham, H. (2018). Stringr: simple, consistent wrappers for common string operations. R

package version 1.3.1. Retrieved from https://CRAN.R-project.org/package=stringr

Wright, S. (1934). The method of path coe�cients. The annals of mathematical statistics,

5 (3), 161�215.

67

https://www.R-project.org/
https://www.R-project.org/
http://www.jstatsoft.org/v48/i02/
https://CRAN.R-project.org/package=shinycssloaders
https://dx.doi.org/10.1037/a0018719
https://dx.doi.org/10.1007/978-94-007-0753-5_295
http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
https://dx.doi.org/10.1037/a0027543
https://CRAN.R-project.org/package=stringr

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources. The work was not sub-

mitted or published in the same or a similar form in another test authority so far.

Jena, July 9, 2018

Julia Gantner

